欢迎光临散文网 会员登陆 & 注册

面积最大的圆内接四边形(2022全国乙,9)

2022-12-27 22:43 作者:数学老顽童  | 我要投稿

(2022全国乙,9)已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为(    )

A.%5Cfrac%7B1%7D%7B3%7D

B.%5Cfrac%7B1%7D%7B2%7D

C.%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B3%7D

D.%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D

解:

设底面四边形为ABCD

其所在圆的半径为r

%5Cangle%20AOB%3D%5Calpha%20%5Cangle%20BOC%3D%5Cbeta%20

%5Cangle%20COD%3D%5Cgamma%20%5Cangle%20DOA%3D%5Cdelta%20,则

%5Cbegin%7Baligned%7D%0A%09S_%7B%5Ctext%7B%E5%9B%9B%E8%BE%B9%E5%BD%A2%7DABCD%7D%26%3D%5Cfrac%7B1%7D%7B2%7Dr%5E2%5Csin%20%5Calpha%20%2B%5Cfrac%7B1%7D%7B2%7Dr%5E2%5Csin%20%5Cbeta%20%2B%5Cfrac%7B1%7D%7B2%7Dr%5E2%5Csin%20%5Cgamma%20%2B%5Cfrac%7B1%7D%7B2%7Dr%5E2%5Csin%20%5Cdelta%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7Dr%5E2%5Cleft(%20%5Csin%20%5Calpha%20%2B%5Csin%20%5Cbeta%20%2B%5Csin%20%5Cgamma%20%2B%5Csin%20%5Cdelta%20%5Cright)%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7Dr%5E2%5Cleft(%202%5Csin%20%5Cfrac%7B%5Calpha%20%2B%5Cbeta%7D%7B2%7D%5Ccos%20%5Cfrac%7B%5Calpha%20-%5Cbeta%7D%7B2%7D%2B2%5Csin%20%5Cfrac%7B%5Cgamma%20%2B%5Cdelta%7D%7B2%7D%5Ccos%20%5Cfrac%7B%5Cgamma%20-%5Cdelta%7D%7B2%7D%20%5Cright)%5C%5C%0A%09%26%5Cleqslant%20%5Cfrac%7B1%7D%7B2%7Dr%5E2%5Cleft(%202%5Csin%20%5Cfrac%7B%5Calpha%20%2B%5Cbeta%7D%7B2%7D%5Ccdot%201%2B2%5Csin%20%5Cfrac%7B%5Cgamma%20%2B%5Cdelta%7D%7B2%7D%5Ccdot%201%20%5Cright)%5C%5C%0A%09%26%3Dr%5E2%5Cleft(%20%5Csin%20%5Calpha%20%2B%5Csin%20%5Cgamma%20%5Cright)%5C%5C%0A%09%26%3Dr%5E2%5Ccdot%202%5Csin%20%5Cfrac%7B%5Calpha%20%2B%5Cgamma%7D%7B2%7D%5Ccos%20%5Cfrac%7B%5Calpha%20-%5Cgamma%7D%7B2%7D%5C%5C%0A%09%26%5Cleqslant%20r%5E2%5Ccdot%202%5Csin%20%5Cfrac%7B%5Calpha%20%2B%5Cgamma%7D%7B2%7D%5Ccdot%201%5C%5C%0A%09%26%3Dr%5E2%5Ccdot%202%5Csin%20%5Cfrac%7B%5Cmathrm%7B%5Cpi%7D%7D%7B2%7D%3D2r%5E2%5C%5C%0A%5Cend%7Baligned%7D

当且仅当%5Calpha%20%3D%5Cbeta%20%3D%5Cgamma%20%3D%5Cdelta%20%3D%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20时,取得最大值.

因为r%5E2%2Bh%5E2%3D1,所以

%5Cbegin%7Baligned%7D%0A%09V_%7B%5Ctext%7B%E5%9B%9B%E6%A3%B1%E9%94%A5%7D%7D%26%3D%5Cfrac%7B1%7D%7B3%7D%5Ccdot%20h%5Ccdot%202r%5E2%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B3%7D%5Ccdot%20h%5Ccdot%202%5Cleft(%201-h%5E2%20%5Cright)%5C%5C%0A%09%26%3D%5Cfrac%7B2%7D%7B3%7Dh%5Cleft(%201-h%5E2%20%5Cright)%5C%5C%0A%5Cend%7Baligned%7D

f%5Cleft(%20h%20%5Cright)%20%3D%5Cfrac%7B2%7D%7B3%7Dh%5Cleft(%201-h%5E2%20%5Cright)%20h%5Cin%20%5Cleft(%200%2C1%20%5Cright)%20

%5Cbegin%7Baligned%7D%0A%09f'%5Cleft(%20h%20%5Cright)%20%26%3D%5Cfrac%7B2%7D%7B3%7D%5Cleft(%201-h%5E2%20%5Cright)%20%2B%5Cfrac%7B2%7D%7B3%7Dh%5Ccdot%20%5Cleft(%20-2h%20%5Cright)%5C%5C%0A%09%26%3D%5Cfrac%7B2%7D%7B3%7D%5Cleft(%201%2B%5Csqrt%7B3%7Dh%20%5Cright)%20%5Cleft(%201-%5Csqrt%7B3%7Dh%20%5Cright)%5C%5C%0A%5Cend%7Baligned%7D

f'%5Cleft(%20h%20%5Cright)%20%3D0,得h%3D%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B3%7D

h%5Cin%20%5Cleft(%200%2C%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B3%7D%20%5Cright)%20,f'%5Cleft(%20h%20%5Cright)%20%3E0,f%5Cleft(%20h%20%5Cright)%20%5Cnearrow%20

h%5Cin%20%5Cleft(%20%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B3%7D%2C1%20%5Cright)%20,f'%5Cleft(%20h%20%5Cright)%20%3C0,f%5Cleft(%20h%20%5Cright)%20%5Csearrow%20

所以f%5Cleft(%20h%20%5Cright)%20_%7B%5Cmax%7D%3Df%5Cleft(%20%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B3%7D%20%5Cright)%20

C.

面积最大的圆内接四边形(2022全国乙,9)的评论 (共 条)

分享到微博请遵守国家法律