ApacheCN 深度学习译文集 20210125 更新
新增了七个教程:
PyTorch 中文官方教程 1.7:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/README.md
PyTorch 分布式概述:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/60.md
单机模型并行最佳实践:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/61.md
分布式数据并行入门:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/62.md
用 PyTorch 编写分布式应用:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/63.md
分布式 RPC 框架入门:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/64.md
使用分布式 RPC 框架实现参数服务器:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/65.md
使用 RPC 的分布式管道并行化:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/66.md
使用异步执行实现批量 RPC 处理:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/67.md
将分布式
DataParallel
与分布式 RPC 框架相结合:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/68.md分析您的 PyTorch 模块:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/52.md
使用 Ray Tune 的超参数调整:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/53.md
模型剪裁教程:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/54.md
LSTM 单词语言模型上的动态量化(beta):github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/55.md
BERT 上的动态量化(Beta):github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/56.md
PyTorch 中使用 Eager 模式的静态量化(beta):github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/57.md
计算机视觉的量化迁移学习教程(beta):github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/58.md
PyTorch 中的命名张量简介(原型):github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/42.md
PyTorch 中通道在最后的内存格式(beta):github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/43.md
使用 PyTorch C++ 前端:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/44.md
自定义 C++ 和 CUDA 扩展:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/45.md
使用自定义 C++ 运算符扩展 TorchScript:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/46.md
使用自定义 C++ 类扩展 TorchScript:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/47.md
TorchScript 中的动态并行性:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/48.md
C++ 前端中的 Autograd:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/49.md
在 C++ 中注册调度运算符:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/50.md
通过使用 Flask 的 REST API 在 Python 中部署 PyTorch:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/37.md
TorchScript 简介:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/38.md
在 C++ 中加载 TorchScript 模型:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/39.md
将模型从 PyTorch 导出到 ONNX 并使用 ONNX 运行时运行它(可选):github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/40.md
强化学习(DQN)教程:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/34.md
训练玩马里奥的 RL 智能体:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/35.md
使用
nn.Transformer
和torchtext
的序列到序列建模:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/27.md从零开始的 NLP:使用字符级 RNN 分类名称:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/28.md
从零开始的 NLP:使用字符级 RNN 生成名称:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/29.md
从零开始的 NLP:使用序列到序列网络和注意力的翻译:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/30.md
使用
torchtext
的文本分类:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/31.mdtorchtext
语言翻译:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/32.md音频 I/O 和
torchaudio
的预处理:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/24.md使用
torchaudio
的语音命令识别:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/25.mdtorchvision
对象检测微调教程:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/19.md计算机视觉的迁移学习教程:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/20.md
对抗示例生成:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/21.md
DCGAN 教程:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/22.md
PyTorch 深度学习:60 分钟的突击:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/02.md
通过示例学习 PyTorch:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/07.md
torch.nn
到底是什么?:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/16.md使用 TensorBoard 可视化模型,数据和训练:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/17.md
张量:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/03.md
torch.autograd
的简要介绍:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/04.md神经网络:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/05.md
训练分类器:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/06.md
热身:NumPy:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/08.md
PyTorch:张量:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/09.md
PyTorch:张量和 Autograd:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/10.md
PyTorch:定义新的 Autograd 函数:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/11.md
PyTorch:
nn
:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/12.mdPyTorch:
optim
:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/13.mdPyTorch:自定义
nn
模块:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/14.mdPyTorch:控制流 + 权重共享:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/15.md
学习 PyTorch:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/01.md
图片/视频:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/18.md
音频:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/23.md
文本:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/26.md
强化学习:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/33.md
在生产中部署 PyTorch 模型:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/36.md
前端 API:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/41.md
模型优化:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/51.md
并行和分布式训练:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-tut-17/59.md
PyTorch 人工智能研讨会:github.com/apachecn/apachecn-dl-zh/blob/master/docs/dl-pt-workshop/README.md
零、前言:github.com/apachecn/apachecn-dl-zh/blob/master/docs/dl-pt-workshop/0.md
一、深度学习和 PyTorch 简介:github.com/apachecn/apachecn-dl-zh/blob/master/docs/dl-pt-workshop/1.md
二、神经网络的构建块:github.com/apachecn/apachecn-dl-zh/blob/master/docs/dl-pt-workshop/2.md
三、使用 DNN 的分类问题:github.com/apachecn/apachecn-dl-zh/blob/master/docs/dl-pt-workshop/3.md
四、卷积神经网络:github.com/apachecn/apachecn-dl-zh/blob/master/docs/dl-pt-workshop/4.md
五、样式迁移:github.com/apachecn/apachecn-dl-zh/blob/master/docs/dl-pt-workshop/5.md
六、使用 RNN 分析数据序列:github.com/apachecn/apachecn-dl-zh/blob/master/docs/dl-pt-workshop/6.md
七、附录:github.com/apachecn/apachecn-dl-zh/blob/master/docs/dl-pt-workshop/7.md
Python 一次学习实用指南:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-1shot-learn-py/README.md
五、基于生成建模的方法:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-1shot-learn-py/5.md
六、总结和其他方法:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-1shot-learn-py/6.md
二、基于指标的方法:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-1shot-learn-py/2.md
三、基于模型的方法:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-1shot-learn-py/3.md
四、基于优化的方法:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-1shot-learn-py/4.md
一、一次学习简介:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-1shot-learn-py/1.md
零、前言:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-1shot-learn-py/0.md
第一部分:一次学习简介:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-1shot-learn-py/sec1.md
第二部分:深度学习架构:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-1shot-learn-py/sec2.md
第三部分:其他方法和结论:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-1shot-learn-py/sec3.md
Python 自然语言处理实用指南:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-nlp-pt-1x/README.md
五、循环神经网络和情感分析:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-nlp-pt-1x/5.md
六、用于文本分类的卷积神经网络:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-nlp-pt-1x/6.md
七、使用序列到序列神经网络的文本翻译:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-nlp-pt-1x/7.md
八、使用基于注意力的神经网络构建聊天机器人:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-nlp-pt-1x/8.md
九、前方的路:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-nlp-pt-1x/9.md
三、NLP 和文本嵌入:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-nlp-pt-1x/3.md
四、文本预处理,词干提取和词形还原:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-nlp-pt-1x/4.md
一、机器学习和深度学习的基础:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-nlp-pt-1x/1.md
二、用于 NLP 的 PyTorch 1.x 入门:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-nlp-pt-1x/2.md
零、前言:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-nlp-pt-1x/0.md
第一部分:用于 NLP 的 PyTorch 1.x 的要点:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-nlp-pt-1x/sec1.md
第二部分:自然语言处理基础:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-nlp-pt-1x/sec2.md
第三部分:使用 PyTorch 1.x 的实际 NLP 应用:github.com/apachecn/apachecn-dl-zh/blob/master/docs/handson-nlp-pt-1x/sec3.md
PyTorch 人工智能基础知识:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-ai-fund/README.md
零、前言:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-ai-fund/0.md
一、使用 PyTorch 使用张量:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-ai-fund/1.md
二、与神经网络协作:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-ai-fund/2.md
三、用于计算机视觉的卷积神经网络:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-ai-fund/3.md
四、用于 NLP 的循环神经网络:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-ai-fund/4.md
五、迁移学习和 TensorBoard:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-ai-fund/5.md
六、探索生成对抗网络:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-ai-fund/6.md
七、深度强化学习:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-ai-fund/7.md
八、在 PyTorch 中生产 AI 模型:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-ai-fund/8.md
PyTorch 深度学习实用指南:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-dl-handson/README.md
零、前言:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-dl-handson/0.md
一、深度学习演练和 PyTorch 简介:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-dl-handson/1.md
二、简单的神经网络:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-dl-handson/2.md
三、深度学习工作流程:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-dl-handson/3.md
四、计算机视觉:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-dl-handson/4.md
五、序列数据处理:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-dl-handson/5.md
六、生成网络:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-dl-handson/6.md
七、强化学习:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-dl-handson/7.md
八、生产中的 PyTorch:github.com/apachecn/apachecn-dl-zh/blob/master/docs/pt-dl-handson/8.md
TensorFlow 强化学习:github.com/apachecn/apachecn-dl-zh/blob/master/docs/rl-tf/README.md
零、前言:github.com/apachecn/apachecn-dl-zh/blob/master/docs/rl-tf/00.md
一、深度学习–架构和框架:github.com/apachecn/apachecn-dl-zh/blob/master/docs/rl-tf/01.md
二、使用 OpenAI Gym 训练强化学习智能体:github.com/apachecn/apachecn-dl-zh/blob/master/docs/rl-tf/02.md
三、马尔可夫决策过程:github.com/apachecn/apachecn-dl-zh/blob/master/docs/rl-tf/03.md
四、策略梯度:github.com/apachecn/apachecn-dl-zh/blob/master/docs/rl-tf/04.md
五、Q 学习和深度 Q 网络:github.com/apachecn/apachecn-dl-zh/blob/master/docs/rl-tf/05.md
六、异步方法:github.com/apachecn/apachecn-dl-zh/blob/master/docs/rl-tf/06.md
七、一切都是机器人-真正的战略游戏:github.com/apachecn/apachecn-dl-zh/blob/master/docs/rl-tf/07.md
八、AlphaGo –最好的强化学习:github.com/apachecn/apachecn-dl-zh/blob/master/docs/rl-tf/08.md
九、自动驾驶中的强化学习:github.com/apachecn/apachecn-dl-zh/blob/master/docs/rl-tf/09.md
十、金融投资组合管理:github.com/apachecn/apachecn-dl-zh/blob/master/docs/rl-tf/10.md
十一、机器人技术中的强化学习:github.com/apachecn/apachecn-dl-zh/blob/master/docs/rl-tf/11.md
十二、广告技术中的深度强化学习:github.com/apachecn/apachecn-dl-zh/blob/master/docs/rl-tf/12.md
十三、图像处理中的强化学习:github.com/apachecn/apachecn-dl-zh/blob/master/docs/rl-tf/13.md
十四、NLP 中的深度强化学习:github.com/apachecn/apachecn-dl-zh/blob/master/docs/rl-tf/14.md
十五、强化学习的其他主题:github.com/apachecn/apachecn-dl-zh/blob/master/docs/rl-tf/15.md
下载
Docker
docker pull apachecn0/apachecn-dl-zh
docker run -tid -p <port>:80 apachecn0/apachecn-dl-zh
# 访问 http://localhost:{port}
PYPI
pip install apachecn-dl-zh
apachecn-dl-zh <port>
# 访问 http://localhost:{port}
NPM
npm install -g apachecn-dl-zh
apachecn-dl-zh <port>
# 访问 http://localhost:{port}
贡献指南
本项目需要校对,欢迎大家提交 Pull Request。
请您勇敢地去翻译和改进翻译。虽然我们追求卓越,但我们并不要求您做到十全十美,因此请不要担心因为翻译上犯错——在大部分情况下,我们的服务器已经记录所有的翻译,因此您不必担心会因为您的失误遭到无法挽回的破坏。(改编自维基百科)