欢迎光临散文网 会员登陆 & 注册

复旦大学谢启鸿老师高等代数在线习题课 思考题分析与解 ep.31

2021-10-21 13:22 作者:CharlesMa0606  | 我要投稿

本文内容主要有关于线性映射及其运算,在高代白皮书上对应第4.2.1节

题目来自于复旦大学谢启鸿教授在本站高等代数习题课的课后思考题,本文仅供学习交流

习题课视频链接:复旦大学谢启鸿高等代数习题课_哔哩哔哩_bilibili

本人解题水平有限,可能会有错误,恳请斧正!

练习题1(17级高代期末考试第六大题)  设M_n%5Cleft(K%5Cright)为数域K上的n阶方阵全体构成的线性空间,A%2CB%5Cin%20M_n%5Cleft(K%5Cright),M_n%5Cleft(K%5Cright)上的线性变换%5Cvarphi定义为%5Cvarphi%5Cleft(X%5Cright)%3DAXB.证明:%5Cvarphi是幂零线性变换的充要条件是A%2CB中至少有一个是幂零阵.

分析与解  注意到%5Cvarphi是幂零线性变换即%5Cexists%20m%5Cin%20N%5E%5Cast%2Cst.A%5EmXB%5Em%3DO%2C%5Cforall%20X%5Cin%20M_n%5Cleft(K%5Cright)

于是充分性显然,我们只需要证明必要性.

考虑基础矩阵,有:

%5Cleft(A%5EmE_%7Bij%7DB%5Em%5Cright)_%7Bkl%7D%3Da_%7Bki%7Db_%7Bjl%7D%3D0

从而a_%7Bij%7Db_%7Bkl%7D%3D0%2C%5Cforall%20i%2Cj%2Ck%2Cl%E5%85%B6%E4%B8%ADa_%7Bij%7D%2Cb_%7Bkl%7D%E6%98%AFA%5Em%2CB%5Em%E7%9A%84%E7%AC%AC%5Cleft(i%2Cj%5Cright)%2C%5Cleft(k%2Cl%5Cright)%E5%85%83%E7%B4%A0.

%5Cexists%20a_%7Bij%7D%5Cneq0%0A,则b_%7Bkl%7D%3D0%2C%5Cforall%20k%2Cl%0A%0A,于是B%5Em%3DO.

所以A%2CB中至少有一个是幂零阵.

练习题2(17级高代I期末考试第七大题)  设U%2CV%2CW均为数域上的非零线性空间,%5Cvarphi%3AV%5Crightarrow%20U%5Cpsi%3AU%5Crightarrow%20W是线性映射,满足r%5Cleft(%5Cpsi%5Cvarphi%5Cright)%3Dr%5Cleft(%5Cvarphi%5Cright).证明:存在线性映射%5Cxi%3AW%5Crightarrow%20U,使得%5Cxi%5Cpsi%5Cvarphi%3D%5Cvarphi.

分析与解  不妨设r%5Cleft(%5Cpsi%5Cvarphi%5Cright)%3Dr%5Cleft(%5Cvarphi%5Cright)%3Dr,取Im%5Cvarphi的一组基%5C%7Be_1%2C%5Ccdots%2Ce_r%5C%7DIm%5Cpsi%5Cvarphi的一组基%5C%7Bf_1%2C%5Ccdots%2Cf_r%5C%7D

任取%5Calpha%5Cin%20Im%5Cvarphi,不妨设为%5Calpha%3Dc_1e_1%2B%5Ccdots%2Bc_re_r

从而:

%5Cpsi%5Cleft(%5Calpha%5Cright)%3Dc_1%5Cpsi%5Cleft(e_1%5Cright)%2Bc_2%5Cpsi%5Cleft(e_2%5Cright)%2B%5Ccdots%2Bc_r%5Cpsi%5Cleft(e_r%5Cright)%3D%5Clambda_1f_1%2B%5Clambda_2f_2%2B%5Ccdots%2B%5Clambda_rf_r%5Cin%20Im%5Cpsi%5Cvarphi

于是%5Cpsi%5Cleft(e_1%5Cright)%2C%5Cpsi%5Cleft(e_2%5Cright)%2C%5Ccdots%2C%5Cpsi%5Cleft(e_r%5Cright)线性无关,即它是Im%5Cpsi%5Cvarphi的一组基.

注意到e_1%2C%5Ccdots%2Ce_r%5Cin%20Im%5Cvarphi

从而存在r个线性无关的向量%5Cnu_%7Bi%7D%2Cst.%20e_%7Bi%7D%3D%5Cvarphi(%5Cnu_%7Bi%7D)(%5Cforall1%5Cleq%20i%5Cleq%20r)

我们构造线性映射%5Cxi%3AW%5Crightarrow%20U如下,只需要考虑V上基向量的取值,有:

%5Cxi%5Cpsi%5Cvarphi%5Cleft(%5Cnu_i%5Cright)%3D%5Cxi%5Cpsi%5Cleft(e_i%5Cright)%3D%5Cvarphi%5Cleft(e_i%5Cright)%2C%5Cxi%5Cpsi%5Cvarphi%5Cleft(u_i%5Cright)%3D%5Cxi%5Cpsi%5Cleft(0%5Cright)%3D0.

于是存在线性映射%5Cxi%3AW%5Crightarrow%20U,使得%5Cxi%5Cpsi%5Cvarphi%3D%5Cvarphi.

练习题3  V是有理数域上的三维线性空间,%5CvarphiV上的线性变换并且满足条件

%5Cvarphi%5Cleft(%5Calpha%5Cright)%3D%5Cbeta%2C%5Cvarphi%5Cleft(%5Cbeta%5Cright)%3D%5Cgamma%2C%5C%20%5C%20%5Cvarphi%5Cleft(%5Cgamma%5Cright)%3D%5Calpha%2B%5Cbeta

求证:若%5Calpha%5Cneq0,则%5Calpha%2C%5Cbeta%2C%5Cgamma是线性无关的向量.

分析与解  我们先设%5Calpha%2C%5Cbeta线性相关,即%5Calpha%3Dk%5Cbeta%2Ck%5Cin%20Q,代入条件,有:

%5Cgamma%3Dk%5E2%5Calpha%2Ck%5E3%5Calpha%3D%5Calpha%2Bk%5Calpha

注意到于是得到方程k%5E3-k-1%3D0,由高代白皮书例5.45,因为f(0)%2Cf(1)是奇数,所以原方程没有有理根.从而必线性无关.下设%5Cgamma%3Dk%5Calpha%2Bl%5Cbeta%2Ck%2Cl%5Cin%20Q,代入有:

%5Cvarphi%5Cleft(%5Cgamma%5Cright)%3Dk%5Cvarphi%5Cleft(%5Calpha%5Cright)%2Bl%5Cvarphi%5Cleft(%5Cbeta%5Cright)%3Dk%5Cbeta%2Bl%5Cleft(k%5Calpha%2Bl%5Cbeta%5Cright)%3Dkl%5Calpha%2B%5Cleft(k%2Bl%5E2%5Cright)%5Cbeta%3D%5Calpha%2B%5Cbeta

移项,有:%5Cleft(kl-1%5Cright)%5Calpha%2B%5Cleft(k%2Bl%5E2-1%5Cright)%5Cbeta%3D0,注意到线性无关,于是得到方程:

l%5E3-l%2B1%3D0

这个方程也没有有理根,从而它们是线性无关的向量.

练习题4(14级高代I每周一题第7题)  设A是有理数域Q上的4阶方阵,%5Calpha_1%2C%5Calpha_2%2C%5Calpha_3%2C%5Calpha_4Q上的4维列向量,满足:

A%5Calpha_1%3D%5Calpha_2%2CA%5Calpha_2%3D%5Calpha_3%2CA%5Calpha_3%3D%5Calpha_4%2CA%5Calpha_4%3D-%5Calpha_1-%5Calpha_2-%5Calpha_3-%5Calpha_4.

证明:若%5Calpha_1%5Cneq0,则%5C%7B%5Calpha_1%2C%5Calpha_2%2C%5Calpha_3%2C%5Calpha_4%5C%7D4维列向量空间Q%5E%7B4%7D的一组基.

分析与解  %5Calpha_1%2C%5Calpha_2线性相关,不妨设%5Calpha_2%3Dk%5Calpha_1%2Ck%5Cin%20Q,代入得:

%5Calpha_3%3Dk%5E2%5Calpha_1%2C%5Calpha_4%3Dk%5E3%5Calpha_1%2CA%5Calpha_4%3Dk%5E4%5Calpha_1

因为%5Calpha_1%5Cneq0从而得到方程组:k%5E4%2Bk%5E3%2Bk%5E2%2Bk%2B1%3D0,这个方程没有有理根,于是%5Calpha_1%2C%5Calpha_2线性无关.

%5Calpha_1%2C%5Calpha_2%2C%5Calpha_3线性相关,则不妨设%5Calpha_3%3Dk%5Calpha_1%2Bl%5Calpha_2%2Ck%2Cl%5Cin%20Q,同样代入得

%5Calpha_4%3DA%5Calpha_3%3Dkl%5Calpha_1%2B%5Cleft(k%2Bl%5Cright)%5Calpha_2%2CA%5Calpha_4%3Dk%5Cleft(k%2Bl%5Cright)%5Calpha_1%2B%5Cleft(2kl%2Bl%5E2%5Cright)%5Calpha_2

于是可以得到方程组:

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7Dk%5E2%2Bk%2B2kl%2B1%3D0%5C%5Cl%5E2%2B2kl%2B1%2B2l%2Bk%3D0%5C%5C%5Cend%7Bmatrix%7D%5Cright.

整理得:3k%5E4%2B2k%5E3%2Bk%5E2%2B2k-1%3D0

这个方程没有有理根,从而%5Calpha_1%2C%5Calpha_2%2C%5Calpha_3线性无关.下设%5Calpha_4%3Dk%5Calpha_1%2Bl%5Calpha_2%2Br%5Calpha_3,同样代入可以得到方程:

k%5E4%2Bk%5E3%2Bk%5E2%2Bk%2B1%3D0

这个方程也没有有理根,从而%5C%7B%5Calpha_1%2C%5Calpha_2%2C%5Calpha_3%2C%5Calpha_4%5C%7D4维列向量空间Q%5E%7B4%7D的一组基.

推广  A是有理数域上的p-1阶方阵(其中p为素数),%5Calpha_1%2C%5Ccdots%2C%5Calpha_%7Bp-1%7DQ上的p-1维列向量,满足:

A%5Calpha_1%3D%5Calpha_2%2C%5Ccdots%2CA%5Calpha_%7Bp-1%7D%3D-%5Calpha_1-%5Ccdots-%5Calpha_%7Bp-1%7D

则若%5Calpha_1%5Cneq0,则%5Calpha_1%2C%5Ccdots%2C%5Calpha_%7Bp-1%7D是有理数域上的p-1维列向量空间Q%5E%7Bp-1%7D的一组基.

参考资料

1.复旦大学谢启鸿高等代数习题课_哔哩哔哩_bilibili

2.谢启鸿高等代数博客(https://www.cnblogs.com/torsor/)



复旦大学谢启鸿老师高等代数在线习题课 思考题分析与解 ep.31的评论 (共 条)

分享到微博请遵守国家法律