欢迎光临散文网 会员登陆 & 注册

磁矩

2023-06-17 14:20 作者:sn42  | 我要投稿

磁矩和电偶极矩类似,是电磁学中的重点。将一个带有电流的回路放在匀强磁场(为了简化问题我们暂且只研究匀强),会有绕质心的力矩产生,使回路转动。由于整体没有电流,所以回路受合外力为0。

我们研究如下问题

  1. 回路(设它没有支路)所受安培力的力矩:

    (下述环路积分均在回路上且沿电流方向)

    由力矩定义和安培力公式写出:

    %5Cmathbf%7BM%7D%20%3D%5Coint%20%5Cmathbf%7Br%7D%20%5Ctimes%20%5Cmathrm%7Bd%7D%5Cmathbf%7BF%7D%3D%0A%5Coint%20%5Cmathbf%7Br%7D%20%5Ctimes%20(I%5Cmathrm%7Bd%7D%5Cmathbf%7Br%7D%5Ctimes%5Cmathbf%7BB%7D)%3D%0AI%5Coint(%5Cmathbf%20r%20%5Ccdot%20%5Cmathbf%20B)%5Ccdot%20%5Cmathrm%7Bd%7D%5Cmathbf%7Br%7D-I%5Coint%20(%5Cmathbf%20r%20%5Ccdot%20%5Cmathrm%7Bd%7D%5Cmathbf%7Br%7D)%5Ccdot%5Cmathbf%7BB%7D%3D%0AI%5Coint(%5Cmathbf%20r%20%5Ccdot%20%5Cmathbf%20B)%5Ccdot%20%5Cmathrm%7Bd%7D%5Cmathbf%7Br%7D

    第三个等号用到了矢量分析公式:%5Cmathbf%20A%20%5Ctimes%20(%5Cmathbf%20B%20%5Ctimes%20%5Cmathbf%20C)%3D(%5Cmathbf%20A%20%5Ccdot%5Cmathbf%20C)%5Cmathbf%20B-(%5Cmathbf%20A%20%5Ccdot%5Cmathbf%20B)%5Cmathbf%20C

    第四个等号是因为左式第二项为0,不能理解的话可以展开成分量形式证明

    接下来有一个突破口:%5Coint%20(%5Cmathbf%20r%20%5Ccdot%20%5Cmathbf%20B)%5Cmathrm%20d%20%5Cmathbf%20r%2B%0A%5Coint%20(%5Cmathrm%20d%20%5Cmathbf%20r%20%5Ccdot%20%5Cmathbf%20B)%5Cmathbf%20r%3D%5Cmathbf%200

    展开为分量形式可证。

    另外有:2%5Cmathbf%20S%5Ctimes%5Cmathbf%20B%3D%5Coint%20(%5Cmathbf%20r%5Ctimes%5Cmathrm%20d%5Cmathbf%20r)%5Ctimes%5Cmathbf%20B%3D%0A%5Coint(%5Cmathbf%20r%5Ccdot%20%5Cmathbf%20B)%5Cmathrm%20d%5Cmathbf%20r-%5Coint(%5Cmathrm%20d%5Cmathbf%20r%5Ccdot%20%5Cmathbf%20B)%5Cmathbf%20r

    两式联立得到%5Cmathbf%20S%5Ctimes%5Cmathbf%20B%3D%5Coint%20(%5Cmathbf%20r%20%5Ccdot%20%5Cmathbf%20B)%5Cmathrm%20d%20%5Cmathbf%20r

    带回力矩的表达式得到%5Cmathbf%20M%3DI%5Cmathbf%20S%5Ctimes%5Cmathbf%20B

    这里的S是广义的面积,带有方向,计算式为%5Cmathbf%20S%3D%5Cfrac%7B1%7D%7B2%7D%20%5Coint%20%5Cmathbf%20r%5Ctimes%5Cmathrm%20d%5Cmathbf%20r

    如果回路在一个平面上则可以简单的用回路沿电流方向的右手螺旋定则确定S的方向。

    磁矩在磁场中具有的能量E%3D%5Cint_%7B0%7D%5E%7B%5Ctheta%7D%20-ISB%5Csin%20%5Ctheta%5Cmathrm%20d%20%5Ctheta%3D-ISB%5Cmathrm%20cos%5Ctheta%3D-I%5Cmathbf%20S%5Ccdot%5Cmathbf%20B

    积分后没有带常数是因为没有必要。


  2. 圆环形线圈在空间中产生的磁场:

    一个带有很小的半径R的,带有电流I的圆环在空间直角坐标系Oxyz中,O为其圆心,其面积指向z轴,空间中磁导率为%5Cmu_0

    我们计算到O距离为r_0,与水平面夹角为%5Cvarphi的点A(r_0%5Ccos%20%5Cvarphi%2C0%2Cr_0%5Csin%20%5Cvarphi)处的磁场:

    圆环上位置为(R%5Ccos%20%5Ctheta%2CR%5Csin%20%5Ctheta%2C0)的大小为R%5Cmathrm%20d%20%5Ctheta(-%5Csin%20%5Ctheta%2C%5Ccos%20%5Ctheta%2C0)的微元指向A的向量:%5Cmathbf%20r%3D(r_0%5Ccos%20%5Cvarphi%20-R%5Ccos%5Ctheta%2C-R%5Csin%5Ctheta%2Cr_0%5Csin%5Cvarphi),

    其长度可近似看作r_0-R%5Ccos%5Ctheta%5Ccos%5Cvarphi

    于是这个微元产生的磁场:%5Cmathrm%20d%5Cmathbf%20B%3D%5Cfrac%7B%5Cmu_0I%5Cmathrm%20d%5Cmathbf%20l%5Ctimes%20%5Cmathbf%20r%20%7D%7B4%5Cpi%20r%5E3%7D%20%0A%3D%5Cfrac%7B%5Cmu_0IR%5Cmathrm%20d%20%5Ctheta(-%5Csin%20%5Ctheta%2C%5Ccos%20%5Ctheta%2C0)%5Ctimes(r_0%5Ccos%20%5Cvarphi%20-R%5Ccos%5Ctheta%2C-R%5Csin%5Ctheta%2Cr_0%5Csin%5Cvarphi)%20%7D%7B4%5Cpi%20(r_0-R%5Ccos%5Ctheta%5Ccos%5Cvarphi)%5E3%7D%20

    %0A%3D%5Cfrac%7B%5Cmu_0IR%5Cmathrm%20d%20%5Ctheta(r_0%5Csin%5Cvarphi%5Ccos%5Ctheta%2Cr_0%5Csin%5Cvarphi%5Csin%5Ctheta%2CR-r_0%5Ccos%5Cvarphi%5Ccos%5Ctheta)%20%7D%7B4%5Cpi%20r_0%5E3%20%7D(1%2B3%5Cfrac%7BR%7D%7Br_0%7Dcos%5Cvarphi%5Ccos%5Ctheta)%20

    对θ在0到2%5Cpi积分得到

    %5Cmathbf%20B%3D%5Cfrac%7B%5Cmu_0I%5Cpi%20R%5E2%7D%7B4%5Cpi%20r_0%5E3%7D(3%5Csin%5Cvarphi%5Ccos%5Cvarphi%2C0%2C2-3%5Ccos%5E2%5Cvarphi)

  3. 求圆环形线圈在空间中产生的磁感线

    不妨只分析轴截面上的磁感线,建立平面直角坐标系xOy

    由2中B的表达式知(%5Cmathrm%20d%20x%2C%5Cmathrm%20d%20y)%E4%B8%8E(3%5Csin%5Cvarphi%5Ccos%5Cvarphi%2C2sin%5E2%5Cvarphi-cos%5E2%5Cvarphi)%E5%85%B1%E7%BA%BF

    %5Cfrac%7B%5Cmathrm%20d%20y%7D%7B%5Cmathrm%20d%20x%7D%20%3D%5Cfrac%7B2y%7D%7B3x%7D%20-%5Cfrac%7Bx%7D%7B3y%7D%20,设%5Cfrac%7By%7D%7Bx%7D%20%3Dk%0A,有%5Cfrac%7B%5Cmathrm%20d%20kx%7D%7B%5Cmathrm%20d%20x%7D%20%3Dk%2Bx%5Cfrac%7B%5Cmathrm%20d%20k%7D%7B%5Cmathrm%20d%20x%7D%20%3D%5Cfrac%7B2%7D%7B3%7D%20k-%5Cfrac%7B1%7D%7B3k%7D%20

    整理得到%5Cfrac%7B3k%5Cmathrm%20d%20k%7D%7Bk%5E2%2B1%7D%20%3D-%5Cfrac%7B%5Cmathrm%20d%20x%7D%7Bx%7D%20

    左右积分得%5Cfrac%7B3%7D%7B2%7D%20%5Cln(k%5E2%2B1)%3D-%5Cln%20x%2BC_1

    %5Cfrac%7By%5E2%7D%7Bx%5E2%7D%2B1%3DC_2x%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D,这就是单条磁感线的表达式,C2是常数

    如果磁感线的密度正比于磁场强度,那么则需要对C2进行一些控制,让磁感线簇能够体现强度。

    磁感线于x轴右交点横坐标:C_2%5E%5Cfrac%7B3%7D%7B2%7D,设n来表示第n根磁感线,在n足够大时,有:

    %5Cfrac%7B1%7D%7B%5Crho%7D%20%3D%5Cfrac%7B%5Cmathrm%20d%20x%7D%7B%5Cmathrm%20d%20n%7D%20%3D%5Cfrac%7B%5Cmathrm%20d%20C_2%5E%5Cfrac%7B3%7D%7B2%7D%7D%7B%5Cmathrm%20d%20n%7D%3D%0A%5Cfrac%7B3C_2%5E%5Cfrac%7B1%7D%7B2%7D%5Cmathrm%20d%20C_2%7D%7B2%5Cmathrm%20d%20n%7D%5Cpropto%20%0Ax%5E3%3DC_2%5E%5Cfrac%7B9%7D%7B2%7D

    %5Cfrac%7B%5Cmathrm%20d%20C_2%7D%7BC_2%5E4%7D%5Cpropto%20%5Cmathrm%20d%20n

    C_2%3DC_3n%5E%7B-%5Cfrac%7B1%7D%7B3%7D%7D

    所以%5Cfrac%7By%5E2%7D%7Bx%5E2%7D%2B1%3DC_3n%5E%7B-%5Cfrac%7B1%7D%7B3%7D%7Dx%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D,这是磁感线簇的表达式,n是正整数。

    最后附上一张磁感线簇的图:




磁感线簇

中间是空的只是因为再向内需要很多线,电脑计算力有限。实际上,他不可能像这样无限向中间延伸,小到一定程度时,R<<r0将失效,我们求得的磁感线也就失真了。


磁矩的评论 (共 条)

分享到微博请遵守国家法律