期货量化软件:赫兹量化多层感知器和反向传播算法--利用 Python 实现并与 MQL5 集成
在本文中,我想演示利用 Python 语言实现这种算法类型是多么容易。
有一个 Python 程序包可用于开发与 MQL 的集成,它提供了大量机会,例如数据探索、创建和使用机器学习模型。
集成在 MQL5 内置的 Python,能够创建各种解决方案,从简单的线性回归、到深度学习模型。 由于这种语言是为专业用途而设计的,因此有许多函数库可以执行与艰难计算相关的任务。
我们将手工创建一个网络。 但正如我在上一篇文章中提到的,这只是帮助我们理解在学习和预测过程中实际发生事件的一个步骤。 然后我将展示一个利用 TensorFlow 和 Keras 的更复杂的例子。
什么是 TensorFlow?
TensorFlow 是一个快速数值处理的开源函数库。
它是由 Google 依照 Apache 开源许可下创建、支持和发布。 该 API 是为 Python 语言设计的,尽管它也可以访问基本的 C++ API。
与设计用于深度学习的其它数字函数库(例如 Theano)不同,TensorFlow 意在研究和生产。 例如,Google 用到的基于机器学习的搜索引擎 RankBrain,和一个非常有趣的计算机视觉项目 DeepDream。
它可以在一个 CPU、GPU 或小型移动设备上的系统中运行,也可在由数百台计算机组成的大型分布式系统中运行。