欢迎光临散文网 会员登陆 & 注册

[Algebra] Brahmagupta–Fibonacci Identity

2021-07-29 08:30 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (郑涛)

【Problem】

The Brahmagupta–Fibonacci identity states that if two positive integers are each the sum of two Squares, then their product is the sum of two Squares. More specifically, consider four positive integers[1] a%2C%20b%2C%20c%2C%20d:

 (a%5E2%2Bb%5E2%20)(c%5E2%2Bd%5E2%20)%3D(ac%E2%88%93bd)%5E2%2B(ad%C2%B1bc)%5E2

The identity first appeared in Diophantus’ "Arithmetica" in the 3rd century AD and later reappeared in Fibonacci’s "Liber Quadratorum" (Book of Squares) in 1225 AD. In the "Brahma-sphuta-siddhanta" (Correctly Established Doctrine of Brahma), Brahmagupta generalized it to

(a%5E2%2Bnb%5E2%20)(c%5E2%2Bnd%5E2%20)%3D(ac%E2%88%93nbd)%5E2%2Bn(ad%C2%B1bc)%5E2 

where n is also a positive integer. Prove the general formula of Brahmagupta.

[1] The identity is true for real numbers a, b, c, d.

【Solution】

(a%5E2%2Bnb%5E2%20)(c%5E2%2Bnd%5E2%20)%3Da%5E2%20c%5E2%2Bna%5E2%20d%5E2%2Bnb%5E2%20c%5E2%2Bn%5E2%20b%5E2%20d%5E2%20

(a%5E2%2Bnb%5E2%20)(c%5E2%2Bnd%5E2%20)%3Da%5E2%20c%5E2%2Bna%5E2%20d%5E2%2Bnb%5E2%20c%5E2%2Bn%5E2%20b%5E2%20d%5E2-2nabcd%2B2nabcd

(a%5E2%2Bnb%5E2%20)(c%5E2%2Bnd%5E2%20)%3D(a%5E2%20c%5E2%E2%88%932nabcd%2Bn%5E2%20b%5E2%20d%5E2%20)%2B(na%5E2%20d%5E2%C2%B12abcd%2Bnb%5E2%20c%5E2%20)

(a%5E2%2Bnb%5E2%20)(c%5E2%2Bnd%5E2%20)%3D(ac%E2%88%93nbd)%5E2%2Bn(ad%C2%B1bc)%5E2


Brahmagupta
Fibonacci




[Algebra] Brahmagupta–Fibonacci Identity的评论 (共 条)

分享到微博请遵守国家法律