一道几何题的代数解法(较繁琐)
原题参考原视频:
设AB=1
在△ABE中,由正弦定理得:
AE/sin80°=1/sin30°
即AE=2sin80°
在△ABD中,由正弦定理得:
AD/sin60°=1/sin40°
即AD=sin60°/sin40°
过D作DM⊥AE于M
则在Rt△ADM中,
DM=ADsin10°=sin60°sin10°/sin40°
AM=ADcos10°=sin60°cos10°/sin40°
设待求角为θ
在Rt△DME中
tanθ=DM/ME=DM/(AE-AM)
=[sin60°sin10°/sin40°]/
[2sin80°-sin60°cos10°/sin40°]
=sin60°sin10°/
(2sin80°sin40°-sin60°cos10°)
将sin80°换成cos10°
=sin60°sin10°/[cos10°(2sin40°-sin60°)]
其中,2sin40°-sin60°
=sin40°-sin60°+sin40°
=2cos50°sin(-10°)+sin40°
=-2sin40°sin10°+sin40°
=sin40°(1-2sin10°)
=2sin40°(sin30°-sin10°)
=2sin40°*2cos20°sin10°
=4sin40°cos20°sin10°
代入原式得:
原式=sin60°sin10°/(cos10°*4sin40°cos20°sin10°)
=cos30°/(4cos10°cos20°sin40°)
=(4cos³10°-3cos10°)/
(4cos10°cos20°sin40°)
=(4cos²10°-3)/(4cos20°sin40°)
=(2cos20°-1)/(4cos20°sin40°)
=2(cos20°-cos60°)/(4cos20°sin40°)
=-4sin40°sin(-20°)/(4cos20°sin40°)
=4sin40°sin20°/(4cos20°sin40°)
=tan20°
故θ=20°
ps:上述化简涉及二倍角公式,三倍角公式,诱导公式及和差化积等三角恒等变换知识。此法思路即先写出待求角正切值表达式,后通过对分子分母和差化积化简最后得到分子分母仅剩一正弦一余弦,即可化切求值