李沐python教程 运行中grad can be implicitly created only for scalar out
d2l包中封装的函数有问题,和前面课程里实现的有点不一样所以会出问题。把这个文件C:\Users\86156\miniconda3\envs\d2l\Lib\site-packages\d2l\torch.py 中的243行的函数改成:
# Defined in file: ./chapter_linear-networks/softmax-regression-scratch.md
def train_epoch_ch3(net, train_iter, loss, updater):
"""The training loop defined in Chapter 3."""
# Set the model to training mode
if isinstance(net, torch.nn.Module):
net.train()
# Sum of training loss, sum of training accuracy, no. of examples
metric = Accumulator(3)
for X, y in train_iter:
# Compute gradients and update parameters
y_hat = net(X)
l = loss(y_hat, y)
if isinstance(updater, torch.optim.Optimizer):
# Using PyTorch in-built optimizer & loss criterion
updater.zero_grad()
l.mean().backward()
updater.step()
#metric.add(float(l) * len(y), accuracy(y_hat, y),
# y.size().numel())
else:
# Using custom built optimizer & loss criterion
l.sum().backward()
updater(X.shape[0])
metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
# Return training loss and training accuracy
return metric[0] / metric[2], metric[1] / metric[2]
