欢迎光临散文网 会员登陆 & 注册

2023年全国乙卷理科数学导数大题解析

2023-07-16 18:42 作者:格心致力  | 我要投稿

已知f%5Cleft(x%5Cright)%3D%5Cleft(%5Cfrac%7B1%7D%7Bx%7D%2Ba%5Cright)%5Cln%7B%5Cleft(1%2Bx%5Cright)%7D

⑴当a%3D-1时,求曲线y%3Df%5Cleft(x%5Cright)在点%5Cleft(1%2Cf%5Cleft(1%5Cright)%5Cright)处的切线方程;

⑵是否存在ab,使得曲线y%3Df%5Cleft(%5Cfrac%7B1%7D%7Bx%7D%5Cright)关于x%3Db对称,若存在,求ab的值,若不存在,说明理由;

⑶若在上存在极值,求a的取值范围。

解:⑴当a%3D-1时,

f%5Cleft(x%5Cright)%3D%5Cleft(%5Cfrac%7B1%7D%7Bx%7D-1%5Cright)%5Cln%7B%5Cleft(1%2Bx%5Cright)%7D

f%5Cleft(1%5Cright)%3D0

f%5Cleft(x%5Cright)求导得

f%5E%5Cprime%5Cleft(x%5Cright)%3D-%5Cfrac%7B1%7D%7Bx%5E2%7D%5Cln%7B%5Cleft(1%2Bx%5Cright)%7D%2B%5Cfrac%7B1-x%7D%7Bx%5Cleft(1%2Bx%5Cright)%7D

f%5E%5Cprime%5Cleft(1%5Cright)%3D-%5Cln%7B2%7D

于是曲线y%3Df%5Cleft(x%5Cright)在点%5Cleft(1%2Cf%5Cleft(1%5Cright)%5Cright)处的切线方程为

y-0%3D-%5Cln%7B2%7D%5Cleft(x-1%5Cright)

x%5Cln%7B2%7D%2By-%5Cln%7B2%7D%3D0

⑵存在a%3D%5Cfrac%7B1%7D%7B2%7Db%3D-%5Cfrac%7B1%7D%7B2%7D,使得曲线y%3Df%5Cleft(%5Cfrac%7B1%7D%7Bx%7D%5Cright)关于x%3Db对称

理由如下:

f%5Cleft(%5Cfrac%7B1%7D%7Bx%7D%5Cright)%3D%5Cleft(x%2Ba%5Cright)%5Cln%7B%5Cleft(1%2B%5Cfrac%7B1%7D%7Bx%7D%5Cright)%7D

分析定义域有

x%5Cin%5Cleft(-%5Cinfty%2C-1%5Cright)%5Ccup%5Cleft(0%2C%2B%5Cinfty%5Cright)

其定义域是关于x%3D-%5Cfrac%7B1%7D%7B2%7D对称的,所以b%3D-%5Cfrac%7B1%7D%7B2%7D

m%5Cleft(x%5Cright)%3Dx%2Ban%5Cleft(x%5Cright)%3D%5Cln%7B%5Cleft(1%2B%5Cfrac%7B1%7D%7Bx%7D%5Cright)%7Dp%5Cleft(x%5Cright)%3Df%5Cleft(%5Cfrac%7B1%7D%7Bx%7D%5Cright)

p%5Cleft(x%5Cright)%3D%5C%20m%5Cleft(x%5Cright)%5C%20n%5Cleft(x%5Cright)

因为n%5Cleft(-%5Cfrac%7B1%7D%7B2%7D%2Bx%5Cright)%3D%5Cln%7B%5Cleft(%5Cfrac%7B%5Cfrac%7B1%7D%7B2%7D%2Bx%7D%7B-%5Cfrac%7B1%7D%7B2%7D%2Bx%7D%5Cright)%7D%3D-%5Cln%7B%5Cleft(%5Cfrac%7B%5Cfrac%7B1%7D%7B2%7D-x%7D%7B-%5Cfrac%7B1%7D%7B2%7D-x%7D%5Cright)%7D%3D-n%5Cleft(-%5Cfrac%7B1%7D%7B2%7D-x%5Cright)

p%5Cleft(-%5Cfrac%7B1%7D%7B2%7D%2Bx%5Cright)%3Dp%5Cleft(-%5Cfrac%7B1%7D%7B2%7D-x%5Cright)

所以

m%5Cleft(-%5Cfrac%7B1%7D%7B2%7D%2Bx%5Cright)%3D-m%5Cleft(-%5Cfrac%7B1%7D%7B2%7D-x%5Cright)

所以m%5Cleft(x%5Cright)%3Dx%2Ba的横轴截距

-a%3D-%5Cfrac%7B1%7D%7B2%7D

a%3D%5Cfrac%7B1%7D%7B2%7D

所以存在ab,满足题意。

f%5Cleft(x%5Cright)%5Cleft(0%2C%2B%5Cinfty%5Cright)上存在极值%5CLeftrightarrow%20f%5E%5Cprime%5Cleft(x%5Cright)%5Cleft(0%2C%2B%5Cinfty%5Cright)上存在零点

f%5E%5Cprime%5Cleft(x%5Cright)%3D-%5Cfrac%7B1%7D%7Bx%5E2%7D%5Cln%7B%5Cleft(1%2Bx%5Cright)%7D%2B%5Cfrac%7B1%2Bax%7D%7Bx%5Cleft(1%2Bx%5Cright)%7D%3D-%5Cfrac%7B1%7D%7Bx%5E2%7D%5Cleft(%5Cln%7B%5Cleft(1%2Bx%5Cright)-%5Cfrac%7Bx%5Cleft(1%2Bax%5Cright)%7D%7B1%2Bx%7D%7D%5Cright)

易得f'%5Cleft(0%5Cright)%3D0

“另起炉灶”(构造新函数),令

g%5Cleft(x%5Cright)%3D%5Cln%7B%5Cleft(1%2Bx%5Cright)-%5Cfrac%7Bx%5Cleft(1%2Bax%5Cright)%7D%7B1%2Bx%7D%7D

易得g%5Cleft(0%5Cright)%3D0

g%5E%5Cprime%5Cleft(x%5Cright)%3D%5Cfrac%7B-ax%5E2%2B%5Cleft(-2a%2B1%5Cright)x%7D%7B%5Cleft(1%2Bx%5Cright)%5E2%7D

a进行分类讨论

参数讨论表 格心原创

因为f%5E%5Cprime%5Cleft(x%5Cright)%5Cleft(0%2C-2%2B%5Cfrac%7B1%7D%7Ba%7D%5Cright)上单调递减,

所以%5Cforall%20x%5Cin%5Cleft(0%2C-2%2B%5Cfrac%7B1%7D%7Ba%7D%5Cright)%2Cf%5E%5Cprime%5Cleft(x%5Cright)%3Cf%5E%5Cprime%5Cleft(0%5Cright)%3D0

则有f%5E%5Cprime%5Cleft(-2%2B%5Cfrac%7B1%7D%7Ba%7D%5Cright)%3C0

x%5Crightarrow%2B%5Cinfty时,f'%5Cleft(x%5Cright)%5Crightarrow%2B%5Cinfty

因而在x%5Cin%20%5Cleft(0%2C%2B%5Cinfty%5Cright)上存在变号零点

综上所述,a的取值范围为%5Cleft(0%2C%5Cfrac%7B1%7D%7B2%7D%5Cright)

评价与反思:此题的第一问很常规,适合大部分同学;第二问考察了轴对称和中心对称的知识,重在分析和思考,弱化了计算;第三问考察了变号零点,分类讨论,对解题者的能力有很大的挑战。需要说明一个较为通用的思路,研究解析式、列表和作图是研究导数的三大工具,尤其是研究解析式和作图,不过作图的过程一般在草稿纸上进行,不展示在解题过程中,在解题过程中处处体现,而列表更多地与运用在叙述上,可以使得分类讨论过程显得一目了然、清晰可见!

2023年全国乙卷理科数学导数大题解析的评论 (共 条)

分享到微博请遵守国家法律