2024年中央民族大学843高等代数考研考试大纲
对于想要报考高等代数考研的考生来说,考研大纲一直是考生关心的重点,有了大纲,才能更明确自己的备考方向,少走很多的复习弯路。为帮助考生了解院校招考信息,研晟考研整理了高等代数考研大纲,供考生参考。
研晟考研
,专注清华北大等985/211名校考研辅导,拥有完善的服务团队,专属定制化的考研备考规划,力争实现每位学子的考研梦、名校梦。 中央民族大学硕士研究生入学考试初试科目考试大纲 科目代码:843科目名称:高等代数 Ⅰ.考查目标 高等代数考试主要目的是测试考生对高等代数基础知识的掌握程度和应用相关知识解决问题的能力。要求考生系统地理解高等代数的基本概念和基本理论,掌握高等代数的基本思想和解决问题方法,能够运用所学的基本知识、基本理论和方法来分析问题和解决问题。 Ⅱ.考试形式和试卷结构: 一、试卷满分及考试时间 试卷满分为150分,考试时间为180分钟. 二、答题方式 闭卷、笔试. 三、试卷内容结构 行列式、线性方程组、矩阵、二次型部分内容所占分值约90分 多项式、线性空间、线性变换、欧几里得空间部分内容所占分值约60分 四、试卷题型结构试卷题型结构为 计算题8小题,共96分 证明题6小题,共54分 Ⅲ.考试范围 一、多项式 1.多项式的带余除法及整除性、最大公因式、互素多项式; 2.不可约多项式、因式分解唯一性定理、重因式、复系数与实系数多项式的因式分解、有理系数多项式不可约的判定; 3.多项式函数与多项式的根、有理系数多项式的有理根的求法。 二、行列式 1.行列式的定义及性质,行列式的子式、余子式及代数余子式; 2.行列式按一行、列的展开定理、Vandermonde行列式、行列式的计算; 3.Cramer法则。 三、线性方程组 1.Gauss消元法与初等变换; 2.向量组的线性相关性、向量组的秩与极大线性无关组、矩阵的秩; 3.线性方程组有解的判别定理与解的结构。 四、矩阵 1.矩阵的基本运算、矩阵的分块及常用分块方法; 2.矩阵的初等变换、初等矩阵、矩阵的等价、矩阵的迹、方阵的多项式; 3.逆矩阵、矩阵可逆的条件及与矩阵的秩和初等矩阵之间的关系,伴随矩阵及其性质; 4.运用初等变换法求向量组和矩阵的秩及逆矩阵。 五、二次型理论 1.二次型及其矩阵表示、矩阵的合同、二次型的标准形与规范形、惯性定理; 2.实二次型在非退化线性替换下的规范形以及在正交替换下的标准形的求法; 3.实二次型、实对称矩阵的正定、半正定、负定、半负定的定义、判别法及其应用。 六、线性空间 1.线性空间、子空间的定义与性质,向量组的线性相关性,子空间的基、维数、向量关于基的坐标,基变换与坐标变换,线性空间的同构; 2.子空间的基扩张定理,生成子空间,子空间的和与直和、维数公式; 七、线性变换 1.线性变换的定义、性质与运算,线性变换的矩阵表示,矩阵的相似、同一个线性变换关于不同基的矩阵之间的关系; 2.矩阵的特征多项式、线性变换及其矩阵的特征值和特征向量的概念和计算、特征子空间、实对称矩阵的特征值与特征向量的性质; 3.线性变换的不变子空间、核、值域的概念、关系及计算; 4.Hamilton-Caylay定理、矩阵可相似对角化的条件与方法、线性变换矩阵的化简。 八、欧氏空间 1.内积与欧氏空间的定义及性质,向量的长度、夹角、距离,正交矩阵,欧氏空间的同构,正交子空间与正交补; 2.欧氏空间的度量矩阵、标准正交基、Schmidt正交化方法; 3.正交变换与正交矩阵的等价条件,对称变换的概念与性质; 4.实对称矩阵的正交相似对角化的求法。 考研上岸在很多人的心里估计都是比较难的,不论是在职还是在校,专业课想拿高分?复习全局难把握?经验贴踩雷无数,关键期错过提升,各种各样的备考问题是不是一大堆?靠自学,没有方法,没有动力,相信这是很多人的内心写照