视频BV1Fy4y1S7uj题12.解析
f(x)关于直线x=π/2对称
且在[-π/2,π/2]单增
故(π-a-π/2)²<(π/2+a-π/2)²
且π-a∈[-π/2,3π/2]
且π/2+a∈[-π/2,3π/2]
即a∈(π/4,π]
ps.
本题考察函数单调性与对称性
f(x)关于直线x=π/2对称
且在[-π/2,π/2]单增
故(π-a-π/2)²<(π/2+a-π/2)²
且π-a∈[-π/2,3π/2]
且π/2+a∈[-π/2,3π/2]
即a∈(π/4,π]
ps.
本题考察函数单调性与对称性