欢迎光临散文网 会员登陆 & 注册

估算上界(2017课标Ⅲ导数)

2022-11-22 11:48 作者:数学老顽童  | 我要投稿

(2017课标Ⅲ,21)已知函数f%5Cleft(%20x%20%5Cright)%20%3Dx-1-a%5Cln%20%20x.

(1)若f%5Cleft(%20x%20%5Cright)%20%5Cgeqslant%200,求a的值;

(2)设m为整数,且对于任意正整数n%5Cleft(%201%2B%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%20%5Cleft(%201%2B%5Cfrac%7B1%7D%7B2%5E2%7D%20%5Cright)%20%5Ccdots%20%5Cleft(%201%2B%5Cfrac%7B1%7D%7B2%5En%7D%20%5Cright)%20%3Cm,求m的最小值.

解:(1)首先注意到%5Ccolor%7Bred%7D%7Bf%5Cleft(%201%20%5Cright)%20%3D0%7D.

求导得f'%5Cleft(%20x%20%5Cright)%20%3D1-%5Cfrac%7Ba%7D%7Bx%7D%3D%5Cfrac%7Bx-a%7D%7Bx%7D

其中,%5Ccolor%7Bred%7D%7Bf'%5Cleft(%201%20%5Cright)%20%3D1-a%7D.

1.1-a%3E0,即%5Ccolor%7Bred%7D%7Ba%3C1%7D

则必然存在实数x_1%5Cin%20%5Cleft(%200%2C1%20%5Cright)%20

x%5Cin%20%5Ccolor%7Bred%7D%7B%5Cleft(%20x_1%2C1%20%5Cright)%20%7Df'%5Cleft(%20x%20%5Cright)%20%3E0f%5Cleft(%20x%20%5Cright)%20%5Ccolor%7Bred%7D%7B%5Cnearrow%20%7D

所以%5Cforall%20x%5Cin%20%5Cleft(%20x_1%2C1%20%5Cright)%20%5Ccolor%7Bred%7D%7Bf%5Cleft(%20x%20%5Cright)%20%3C%7Df%5Cleft(%201%20%5Cright)%20%3D%5Ccolor%7Bred%7D%7B0%7D

不合题意.

2.1-a%3C0,即%5Ccolor%7Bred%7D%7Ba%3E1%7D

则必然存在实数x_1%5Cin%20%5Cleft(%201%2C%2B%5Cinfty%20%5Cright)%20

x%5Cin%20%5Ccolor%7Bred%7D%7B%5Cleft(%201%2Cx_1%20%5Cright)%20%7Df'%5Cleft(%20x%20%5Cright)%20%3C0f%5Cleft(%20x%20%5Cright)%20%5Ccolor%7Bred%7D%7B%5Csearrow%20%7D

所以%5Cforall%20x%5Cin%20%5Cleft(%201%2Cx_1%5Cright)%20%5Ccolor%7Bred%7D%7Bf%5Cleft(%20x%20%5Cright)%20%3C%7Df%5Cleft(%201%20%5Cright)%20%3D%5Ccolor%7Bred%7D%7B0%7D

不合题意.

3.1-a%3D0,即%5Ccolor%7Bred%7D%7Ba%3D1%7D

f%5Cleft(%20x%20%5Cright)%20%3Dx-1-%5Cln%20%20x

f'%5Cleft(%20x%20%5Cright)%20%3D%5Cfrac%7Bx-1%7D%7Bx%7D

x%5Cin%5Ccolor%7Bred%7D%7B%20%5Cleft(%200%2C1%20%5Cright)%20%7Df'%5Cleft(%20x%20%5Cright)%20%3C0f%5Cleft(%20x%20%5Cright)%20%5Ccolor%7Bred%7D%7B%5Csearrow%20%7D

x%5Cin%20%5Ccolor%7Bred%7D%7B%5Cleft(%201%2C%2B%5Cinfty%20%5Cright)%20%7Df'%5Cleft(%20x%20%5Cright)%20%3E0f%5Cleft(%20x%20%5Cright)%20%5Ccolor%7Bred%7D%7B%5Cnearrow%20%7D

所以%5Ccolor%7Bred%7D%7Bf%5Cleft(%20x%20%5Cright)%20%5Cgeqslant%20%7Df%5Cleft(%20x%20%5Cright)%20_%7B%5Cmin%7D%3Df%5Cleft(%201%20%5Cright)%20%3D%5Ccolor%7Bred%7D%7B0%7D

符合题意.

综上所述:%5Ccolor%7Bred%7D%7Ba%3D1%7D.

(2)由(1)可知,x-1-%5Cln%20%20x%5Cgeqslant%200

%5Ccolor%7Bred%7D%7B%5Cln%20%20x%5Cleqslant%20x-1%7D

(当且仅当x%3D1时等号成立)

自然,%5Cforall%20x%5Cin%20%5Cleft(%201%2C%2B%5Cinfty%20%5Cright)%20%5Cln%20%20x%3Cx-1.

换元,令x%3D1%2B%5Cfrac%7B1%7D%7B2%5En%7D,则有:

%5Ccolor%7Bred%7D%7B%5Cforall%20x%5Cin%5Cmathbf%7BN%7D%5E*%7D%5Ccolor%7Bred%7D%7B%5Cln%20%5Cleft(%201%2B%5Cfrac%7B1%7D%7B2%5En%7D%20%5Cright)%3C%5Cfrac%7B1%7D%7B2%5En%7D%7D.

所以

%5Cbegin%7Baligned%7D%0A%09%26%5Ccolor%7Bred%7D%7B%5Cln%7D%20%5Cleft(%201%2B%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%20%5Cleft(%201%2B%5Cfrac%7B1%7D%7B2%5E2%7D%20%5Cright)%20%5Ccdots%20%5Cleft(%201%2B%5Cfrac%7B1%7D%7B2%5En%7D%20%5Cright)%5C%5C%0A%09%3D%26%5Ccolor%7Bred%7D%7B%5Cln%20%5Cleft(%201%2B%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%7D%20%2B%5Ccolor%7Bred%7D%7B%5Cln%20%5Cleft(%201%2B%5Cfrac%7B1%7D%7B2%5E2%7D%20%5Cright)%7D%20%2B%5Ccdots%20%2B%5Ccolor%7Bred%7D%7B%5Cln%20%5Cleft(%201%2B%5Cfrac%7B1%7D%7B2%5En%7D%20%5Cright)%7D%5C%5C%0A%09%3C%26%5Ccolor%7Bred%7D%7B%5Cfrac%7B1%7D%7B2%7D%7D%2B%5Ccolor%7Bred%7D%7B%5Cfrac%7B1%7D%7B2%5E2%7D%7D%2B%5Ccdots%20%2B%5Ccolor%7Bred%7D%7B%5Cfrac%7B1%7D%7B2%5En%7D%7D%5C%5C%0A%09%3D%26%5Cfrac%7B%5Cfrac%7B1%7D%7B2%7D-%5Cfrac%7B1%7D%7B2%5E%7Bn%2B1%7D%7D%7D%7B1-%5Cfrac%7B1%7D%7B2%7D%7D%5C%5C%0A%09%3D%261-%5Cfrac%7B1%7D%7B2%5En%7D%5Ccolor%7Bred%7D%7B%3C1%7D%5C%5C%0A%5Cend%7Baligned%7D

所以

%5Ccolor%7Bred%7D%7B%5Cleft(%201%2B%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%20%5Cleft(%201%2B%5Cfrac%7B1%7D%7B2%5E2%7D%20%5Cright)%20%5Ccdots%20%5Cleft(%201%2B%5Cfrac%7B1%7D%7B2%5En%7D%20%5Cright)%20%3C%5Cmathrm%7Be%7D%7D

又因为

%5Ccolor%7Bred%7D%7B%5Cleft(%201%2B%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%20%5Cleft(%201%2B%5Cfrac%7B1%7D%7B2%5E2%7D%20%5Cright)%20%5Cleft(%201%2B%5Cfrac%7B1%7D%7B2%5E3%7D%20%5Cright)%20%7D%3D%5Cfrac%7B135%7D%7B64%7D%5Ccolor%7Bred%7D%7B%3E2%7D

所以整数%5Ccolor%7Bred%7D%7Bm%7D的最小值为%5Ccolor%7Bred%7D%7B3%7D.(横屏观看).



估算上界(2017课标Ⅲ导数)的评论 (共 条)

分享到微博请遵守国家法律