Pytorch学习笔记7:MNIST多分类实践
#需要import的lib
import torch
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
#需要import的lib
print('——————————MNIST多分类实战——————————')
batch_size=200
learning_rate=0.01
epochs=10
train_loader=torch.utils.data.DataLoader(
datasets.MNIST('../data',train=True,download=True,
transform=transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.1307,),(0.3081,))
]
)
),
batch_size=batch_size,shuffle=True #每个batch load的数据,是不是打乱每个batch的数据
)
test_loader=torch.utils.data.DataLoader(
datasets.MNIST('../data',train=False,
transform=transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.1307,),(0.3081,))
]
)
),
batch_size=batch_size,shuffle=True #每个batch load的数据,是不是打乱每个batch的数据
)
w1,b1=torch.randn(200,784,requires_grad=True),\
torch.zeros(200,requires_grad=True)
w2,b2=torch.randn(200,200,requires_grad=True),\
torch.zeros(200,requires_grad=True)
w3,b3=torch.randn(10,200,requires_grad=True),\
torch.zeros(10,requires_grad=True)
torch.nn.init.kaiming_normal_(w1)#用何凯明的方法初始化数据
torch.nn.init.kaiming_normal_(w2)
torch.nn.init.kaiming_normal_(w3)
def forward(x):#定义一个三层全连接层,用relu防止梯度弥散
x=x@w1.t()+b1
x=torch.relu(x)
x=x@w2.t()+b2
x=torch.relu(x)
x=x@w3.t()+b3
return x
optimizer=torch.optim.SGD([w1,b1,w2,b2,w3,b3],lr=learning_rate)#优化器为SGD
criteon=torch.nn.CrossEntropyLoss()#loss函数为交叉熵
for epoch in range(epochs):
for batch_idx,(data,target) in enumerate(train_loader):
data=data.view(-1,28*28)
logits=forward(data) #把数据放入神经网络得出pred的值
loss=criteon(logits,target) #用loss函数计算pred和target的差
optimizer.zero_grad() #清零梯度
loss.backward() #重新计算梯度
optimizer.step() #用新的梯度计算新的w b,然后迭代
if batch_idx % 100 == 0:
#print('epoch:',epoch)
#print('batch_idx:', batch_idx)
#print('len data', len(data))
#print('len(train_loader.dataset)', len(train_loader.dataset))
#print('len(train_loader)', len(train_loader))
print(
'train epoch:{}[{}/{}({:.0f}%)]\tLoss:{:.6f}'.format(
epoch,batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader),loss.item()
)
)
test_loss=0
correct=0
for data,target in test_loader:
data=data.view(-1,28*28)
logits = forward(data)#把数据放入神经网络得出pred的值
test_loss +=criteon(logits,target).item()#?累加loss
pred =logits.data.max(1)[1]#得出pred的最大值,就是网络识别出来的数字
correct +=pred.eq(target.data).sum()#?target.data
test_loss /=len(test_loader.dataset)
#print('len(test_loader.dataset):', len(test_loader.dataset))
print(
'\ntest set:avg loss:{:.4f},accu:{}/{} ({:.0f}%)\n'.format(
test_loss,correct,len(test_loader.dataset),
100.*correct/len(test_loader.dataset)
)
)
print('——————————MNIST多分类实战——————————')
print('——————————全连接层——————————')
class MLP(torch.nn.Module):#新建一个MLP名称的类
def __init__(self):
super(MLP, self).__init__()
self.model=torch.nn.Sequential(
torch.nn.Linear(784,200),
torch.nn.ReLU(inplace=True),
torch.nn.Linear(200, 200),
torch.nn.ReLU(inplace=True),
torch.nn.Linear(200, 10),
torch.nn.ReLU(inplace=True),
)
def forword(self,x):#自定义forword函数
x=self.model(x)
return x
net=MLP() #初始化一个MLP类
a=torch.randn(200,784)
b=forword(net,a)#把类名称传递给函数
print(b.shape)
print('——————————全连接层——————————')