欢迎光临散文网 会员登陆 & 注册

偷偷使用三角形面积的坐标算法(2020课标Ⅲ圆锥曲线)

2022-08-08 12:11 作者:数学老顽童  | 我要投稿

(2020课标Ⅲ,20)已知椭圆C%5Cfrac%7Bx%5E2%7D%7B25%7D%2B%5Cfrac%7By%5E2%7D%7Bm%5E2%7D%3D10%3Cm%3C5)的离心率为%5Cfrac%7B%5Csqrt%7B15%7D%7D%7B4%7DAB分别为C的左、右顶点.

(1)求C的方程;

(2)若点PC上,点Q在直线x%3D6上,且%5Cleft%7C%20BP%20%5Cright%7C%3D%5Cleft%7C%20BQ%20%5Cright%7CBP%5Cbot%20BQ,求%5Cbigtriangleup%20APQ的面积.

解:(1)由题可知%5Cfrac%7B%5Csqrt%7B25-m%5E2%7D%7D%7B%5Csqrt%7B25%7D%7D%3D%5Cfrac%7B%5Csqrt%7B15%7D%7D%7B4%7D

解得m%5E2%3D%5Cfrac%7B25%7D%7B16%7D

所以C的方程为%5Cfrac%7Bx%5E2%7D%7B25%7D%2B%5Cfrac%7By%5E2%7D%7B%5Cfrac%7B25%7D%7B16%7D%7D%3D1

或者,化简一下:x%5E2%2B16y%5E2%3D25.

(2)设直线x%3D6x轴交于H

PPG%5Cbot%20x轴,垂足为G

由题可知:%5Cbigtriangleup%20PGB%5Ctext%7B%E2%89%8C%7D%5Cbigtriangleup%20BHQ

所以%5Cleft%7C%20PG%20%5Cright%7C%3D%5Cleft%7C%20BH%20%5Cright%7C%3D1

%5Cleft%7C%20y_P%20%5Cright%7C%3D1.

如图,有两种情形,

情形1:

情形2:

相应的,%5Cbigtriangleup%20APQ的形状亦有两种情形,

情形1:

情形2:

延长AP,交直线x%3D6于点M

因为%5Cbigtriangleup%20MHA%5Ctext%7B%E2%88%BD%7D%5Cbigtriangleup%20PGA

所以%5Cfrac%7B%5Cleft%7C%20MH%20%5Cright%7C%7D%7B%5Cleft%7C%20PG%20%5Cright%7C%7D%3D%5Cfrac%7B%5Cleft%7C%20AH%20%5Cright%7C%7D%7B%5Cleft%7C%20AG%20%5Cright%7C%7D

所以%5Cleft%7C%20MH%20%5Cright%7C%3D%5Cfrac%7B%5Cleft%7C%20AH%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20PG%20%5Cright%7C%7D%7B%5Cleft%7C%20AG%20%5Cright%7C%7D,所以

%5Cleft%7C%20QM%20%5Cright%7C%3D%5Cleft%7C%20QH%20%5Cright%7C-%5Cleft%7C%20MH%20%5Cright%7C%3D%5Cleft%7C%20QH%20%5Cright%7C-%5Cfrac%7B%5Cleft%7C%20AH%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20PG%20%5Cright%7C%7D%7B%5Cleft%7C%20AG%20%5Cright%7C%7D.

所以

%5Cbegin%7Baligned%7D%0A%09S_%7B%5Cbigtriangleup%20APQ%7D%26%3DS_%7B%5Cbigtriangleup%20AMQ%7D-S_%7B%5Cbigtriangleup%20PMQ%7D%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft%7C%20QM%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20AH%20%5Cright%7C-%5Cfrac%7B1%7D%7B2%7D%5Cleft%7C%20QM%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20GH%20%5Cright%7C%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft%7C%20QM%20%5Cright%7C%5Ccdot%20%5Cleft(%20%5Cleft%7C%20AH%20%5Cright%7C-%5Cleft%7C%20GH%20%5Cright%7C%20%5Cright)%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft%7C%20QM%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20AG%20%5Cright%7C%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20%5Cleft%7C%20QH%20%5Cright%7C-%5Cfrac%7B%5Cleft%7C%20AH%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20PG%20%5Cright%7C%7D%7B%5Cleft%7C%20AG%20%5Cright%7C%7D%20%5Cright)%20%5Ccdot%20%5Cleft%7C%20AG%20%5Cright%7C%5C%5C%0A%09%26%3D%5Ccolor%7Bred%7D%7B%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20%5Cleft%7C%20AG%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20QH%20%5Cright%7C-%5Cleft%7C%20AH%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20PG%20%5Cright%7C%20%5Cright)%7D%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20%5Cleft%7C%20AG%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20BG%20%5Cright%7C-%5Cleft%7C%20AH%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20BH%20%5Cright%7C%20%5Cright)%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft%5B%20%5Cleft(%20x_P%2B5%20%5Cright)%20%5Ccdot%20%5Cleft(%205-x_P%20%5Cright)%20-11%5Ctimes%201%20%5Cright%5D%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft(%2025-x_%7BP%7D%5E%7B2%7D-11%20%5Cright)%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft(%2016y_%7BP%7D%5E%7B2%7D-11%20%5Cright)%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%5Cleft(%2016%5Ctimes%201%5E2-11%5Ctimes%201%20%5Cright)%20%3D%5Cfrac%7B5%7D%7B2%7D%5C%5C%0A%5Cend%7Baligned%7D

一些超纲说明由于

%5Cbegin%7Baligned%7D%0A%09S_%7B%5Cbigtriangleup%20APQ%7D%26%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft%7C%20%5Coverrightarrow%7BAP%7D%5Ctimes%20%5Coverrightarrow%7BAQ%7D%20%5Cright%7C%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft%7C%20%5Cleft(%20x_P-x_A%2Cy_P-y_A%20%5Cright)%20%5Ctimes%20%5Cleft(%20x_Q-x_A%2Cy_Q-y_A%20%5Cright)%20%5Cright%7C%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft%7C%20%5Cleft(%20x_p-x_A%20%5Cright)%20%5Cleft(%20y_Q-y_A%20%5Cright)%20-%5Cleft(%20x_Q-x_A%20%5Cright)%20%5Cleft(%20y_P-y_A%20%5Cright)%20%5Cright%7C%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft%7C%20%5Cleft%7C%20AG%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20QH%20%5Cright%7C-%5Cleft%7C%20AH%20%5Cright%7C%5Ccdot%20%20%5Cleft%7C%20PG%20%5Cright%7C%20%5Cright%7C%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20%5Cleft%7C%20AG%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20QH%20%5Cright%7C-%5Cleft%7C%20AH%20%5Cright%7C%5Ccdot%20%20%5Cleft%7C%20PG%20%5Cright%7C%20%5Cright)%5C%5C%0A%5Cend%7Baligned%7D

所以红字部分相当于已经推导出了三角形面积的坐标算法.

但由于没有直接套公式,所以不算超纲.

偷偷使用三角形面积的坐标算法(2020课标Ⅲ圆锥曲线)的评论 (共 条)

分享到微博请遵守国家法律