欢迎光临散文网 会员登陆 & 注册

凝聚态场论常用公式(11):QHE与Chern数(弱化版本)

2023-03-29 13:56 作者:打电动的阿伟嘻嘻嘻  | 我要投稿

由弱化的线性响应理论可得

%5Csigma_%7Bxy%7D(%5Comega)%3D%5Cfrac%7B1%7D%7B%5Chbar%5Comega%7D%5Cint%5E%7B%5Cinfty%7D_%7B0%7Ddt%5C%20e%5E%7Bi%5Comega%20t%7D%5Clangle0%7C%5BJ_y(0)%2CJ_x(t)%5D%7C0%5Crangle%2C

插入%7Cn%5Crangle态对时间积分(积分用侧极限定义防止发散)

%5Csigma_%7Bxy%7D%3D%5Cfrac%7Bi%7D%7B%5Comega%7D%5Csum_%7Bn%5Cne0%7D%5Cleft%5B%5Cfrac%7B%5Clangle0%7CJ_y%7Cn%5Crangle%5Clangle%20n%7CJ_x%7C0%5Crangle%7D%7B%5Chbar%20%5Comega%2BE_n-E_0%7D-%5Cfrac%7B%5Clangle0%7CJ_x%7Cn%5Crangle%5Clangle%20n%7CJ_y%7C0%5Crangle%7D%7B%5Chbar%5Comega%2BE_0-E_n%7D%5Cright%5D%2C

对分母展开%5Cfrac%7B1%7D%7B%5Chbar%5Comega%2BE_n-E_0%7D%3D%5Cfrac%7B1%7D%7BE_n-E_0%7D-%5Cfrac%7B%5Chbar%5Comega%7D%7B(E_n-E_0)%5E2%7D%2C

%5Csigma_%7Bxy%7D%3Di%5Chbar%5Csum_%7Bn%5Cne0%7D%5Cfrac%7B%5Clangle0%7CJ_x%7Cn%5Crangle%5Clangle%20n%7CJ_y%7C0%5Crangle-%5Clangle0%7CJ_y%7Cn%5Crangle%5Clangle%20n%7CJ_x%7C0%5Crangle%7D%7B(E_n-E_0)%5E2%7D%2C

此即Kubo-Greenwood公式的弱化版本. 样品长宽为(L_x%2CL_y).

对于本征态考虑微扰 %5CDelta%20H%3D-%5Csum_%7Bi%3Dx%2Cy%7D%5Cfrac%7BJ_i%5CPhi_i%7D%7BL_i%7D%2C%5C%20%7C%5Cpsi_0%5Crangle%5E%7B%5Cprime%7D%3D%7C%5Cpsi_0%5Crangle%2B%5Csum_%7Bn%5Cne%5Cpsi_0%7D%5Cfrac%7B%5Clangle%20n%7C%5CDelta%20H%7C%5Cpsi_0%5Crangle%7D%7BE_n-E_0%7D%7Cn%5Crangle.

考虑绝热近似 %7C%5Cfrac%7B%5Cpartial%20%5Cpsi_0%7D%7B%5Cpartial%20%5CPhi_i%7D%5Crangle%3D-%5Cfrac%7B1%7D%7BL_i%7D%5Csum_%7Bn%5Cne%5Cpsi_0%7D%5Cfrac%7B%5Clangle%20n%7CJ_i%7C%20%5Cpsi_0%5Crangle%7D%7BE_n-E_0%7D%7Cn%5Crangle.

代入Kubo公式可得(这里乘了一个面积)  %5Csigma_%7Bxy%7D%3Di%5Chbar%5B%5Cpartial_%7B%5CPhi_x%20%7D%5Clangle%5Cpsi_0%7C%5Cfrac%7B%5Cpartial%20%5Cpsi_0%7D%7B%5Cpartial%20%5CPhi_y%7D%5Crangle-%5Cpartial_%7B%5CPhi_y%7D%5Clangle%5Cpsi_0%7C%5Cfrac%7B%5Cpartial%20%5Cpsi_0%7D%7B%5Cpartial%20%5CPhi_x%7D%5Crangle%5D.

引入无量纲自变量以及Berry联络,曲率

%5Ctheta_i%3D2%5Cpi%5Cfrac%7B%5CPhi_i%7D%7B%5CPhi_0%7D%5Cin%5B0%2C2%5Cpi)%2C%5C%20%5Cmathcal%7BA%7D_i(%5Ctheta)%3D-i%5Clangle%5Cpsi_0%7C%5Cpartial_%7B%5Ctheta_i%7D%7C%5Cpsi_0%5Crangle%2C%5C%20%5Cmathcal%7BF%7D_%7Bij%7D%3D%5Cpartial_%7B%5Ctheta_i%7D%5Cmathcal%7BA%7D_j-%5Cpartial_%7B%5Ctheta_j%7D%5Cmathcal%7BA%7D_i.

可以得到霍尔电导和第一陈数的关系:

%5Csigma_%7Bxy%7D%3D-%5Cfrac%7Be%5E2%7D%7B2%5Cpi%5Chbar%7DC%2C%5C%20C%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint_%7BMBZ%7Dd%5E2%5Ctheta%20%5C%20%5Cmathcal%7BF_%7Bxy%7D%7D%5Cin%5Cmathbb%7BZ%7D.

整数霍尔电导是一个拓扑数.

值得注意的是,本文的推导是个弱化版本. 正因为弱化了很多内容,所以导致很多地方比较刻意,而且有不少概念缺失,比如:

(1):Kubo-Greenwood公式是格林函数的内容,本文没有证明,而是凑出一个弱化版本.

(2):Berry联络与曲率没有给出解释,正如TKNN当时没有认识到这一层一样.

(3):几何与拓扑的关系没有解释,第一陈数为什么是整数没有解释.

凝聚态场论常用公式(11):QHE与Chern数(弱化版本)的评论 (共 条)

分享到微博请遵守国家法律