欢迎光临散文网 会员登陆 & 注册

一道乘积不等式与解答

2023-03-17 13:38 作者:Ethan骁  | 我要投稿

给定 n%5Cgeq%202, 对于任意 a_1%2Ca_2%2C%5Ccdots%20%2Ca_n%5Cin%20(-1%2C1), 求证: 

                                           %5Cprod%5Climits_%7Bi%3D1%7D%5En%5Cprod%5Climits_%7Bj%3D1%7D%5En%5Cfrac%7B1%2Ba_ia_j%7D%7B1-a_ia_j%7D%5Cgeqslant%201. (韦东奕供题)

注意到

%5Cbegin%7Baligned%7D%0A%5Cln%5Cprod%5Climits_%7Bi%3D1%7D%5En%5Cprod%5Climits_%7Bj%3D1%7D%5En%5Cfrac%7B1%2Ba_ia_j%7D%7B1-a_ia_j%7D%0A%26%3D%5Csum%5Climits_%7Bi%3D1%7D%5En%5Csum%5Climits_%7Bj%3D1%7D%5En%5Cln%5Cleft(%201%2Ba_ia_j%5Cright)%20-%5Cln%5Cleft(%201-a_ia_j%5Cright)%5C%5C%0A%26%3D%5Csum%5Climits_%7Bi%3D1%7D%5En%5Csum%5Climits_%7Bj%3D1%7D%5En%5Cleft(%5Csum%5Climits_%7Bk%3D1%7D%5E%7B%2B%5Cinfty%7D%5Cfrac%7B(-1)%5E%7Bk-1%7D(a_ia_j)%5Ek%7D%7Bk%7D%2B%5Csum%5Climits_%7Bk%3D1%7D%5E%7B%2B%5Cinfty%7D%5Cfrac%7B(a_ia_j)%5Ek%7D%7Bk%7D%5Cright)%5C%5C%0A%26%3D%5Csum%5Climits_%7Bi%3D1%7D%5En%5Csum%5Climits_%7Bj%3D1%7D%5En%5Csum%5Climits_%7Bk%3D1%7D%5E%7B%2B%5Cinfty%7D%5Cfrac%7B2a_i%5E%7B2k-1%7Da_j%5E%7B2k-1%7D%7D%7B2k-1%7D%5C%5C%0A%26%3D2%5Csum%5Climits_%7Bk%3D1%7D%5E%7B%2B%5Cinfty%7D%5Cfrac%201%7B2k-1%7D%5Csum%5Climits_%7Bi%3D1%7D%5En%5Csum%5Climits_%7Bj%3D1%7D%5En%20a_i%5E%7B2k-1%7Da_j%5E%7B2k-1%7D%5C%5C%0A%26%3D2%5Csum%5Climits_%7Bk%3D1%7D%5E%7B%2B%5Cinfty%7D%5Cfrac%201%7B2k-1%7D%5Cleft(%5Csum%5Climits_%7Bi%3D1%7D%5Ena_i%5E%7B2k-1%7D%5Cright)%20%5E2%5C%5C%0A%26%5Cgeqslant%200.%0A%5Cend%7Baligned%7D

我们有 %5Cprod%5Climits_%7Bi%3D1%7D%5En%5Cprod%5Climits_%7Bj%3D1%7D%5En%5Cfrac%7B1%2Ba_ia_j%7D%7B1-a_ia_j%7D%3De%5E%7B%5Cln%5Cprod%5Climits_%7Bi%3D1%7D%5En%5Cprod%5Climits_%7Bj%3D1%7D%5En%5Cfrac%7B1%2Ba_ia_j%7D%7B1-a_ia_j%7D%7D%5Cgeqslant%201.%5Cblacksquare

一道乘积不等式与解答的评论 (共 条)

分享到微博请遵守国家法律