欢迎光临散文网 会员登陆 & 注册

从模拟到数字:什么是采样?

2021-09-20 10:34 作者:造音星球  | 我要投稿




对于每一个想要制作音乐的人,只要你打开DAW并建立新工程,有一件事情就是无法避免的——采样率和采样深度。


你的DAW会问你,你这个工程叫啥名字,要存放在哪里,以及:工程的采样率和采样深度是多少? 


我第一次接触DAW的时候,就被这个问题问懵了。因为我不知道这些数字对应的实际意义是什么。所幸我一开始就用默认的44100Hz、16bit来建立我的第一个工程,所以暂时没有留下遗憾。


1.模拟音频信号


为了搞明白采样是什么,我们得知道计算机是怎么处理音频信号的。想象一下,除了合成器发出的声音之外,几乎所有我们听到的音频元素都是来自于话筒的录音。 


声音在物理空间中是以机械波的形式传导的,机械波进入话筒之后被换能为电信号,在正常的范围内,可以认为这个电信号长得和你发出来的声音的波形基本一模一样,只是他们的载体不同而已。 


这样的电信号是连续的,每一个瞬间都有一个对应的信号的值。(我们把这类信号叫做“模拟信号”,Analog Signal)


可以认为是模拟信号的图象。你可以任选一个x轴的点,并找到对应的y轴的值,这个值实际上可能是无穷小数。 这也意味着,这样的信号是计算机无法接受的。因为计算机储存的空间有限,它只能接受有限的信息量,所以我们要对这个连续的信号进行进一步的处理。 


2. 采样!数模转换


此时我们就需要用到音频接口(Audio Interface,俗称声卡)。声卡最核心的功能就是把连续的模拟信号转换成离散的、有限大小的数字信号。 如何将模拟信号转换成分离的数据呢?方法是这样的:按照一定的时间间隔记录一个电压的幅值,此时时间轴是分离的点;


按照一定的时间间隔取点,此时的时间是分立的(红圈)。 

这样就解决了时间的连续性。那幅度呢? 同样的道理,我们给幅度范围画格子,就让这些点的高度四舍五入地放进去,因为这样我们可以控制每个点的高度都是已知的数值。比如这样:


红圈的点被取值到黄圈的位置,这是我们设置好的分立的间隔(0.1)。

这样我们就可以这么记录这个信号:(以1为最小时间单位)0.8、0.9、0.1、-0.8、-0.3…… 


通过这种办法,我们可以用分离的数据来记录一个连续的波形。 那么问题来了,这样做,波形长得和原来不太一样啊……


蓝色和红色根本不是一个东西啊!

有什么办法呢?我们可以进一步缩小时间上的间隔,如果采样的够密集,问题就能减少吧?同样我们可以增加幅度的格子的密度,让这些数值归纳得更准确。比如这样:


看不太清楚
放大到一个个体的采样点,差别很小了。 

于是,只要我们找到一个合适的时间密度和合适的幅度密度,就可以让连续的模拟信号转化为离散的数字信号(Digital Signal)了。对于这种信号的变换,我们称之为“模数转换(Analog-to-digital conversion,ADC)”。 


这个过程我们称为采样(Sampling)。它通常由音频接口完成。每秒钟我们采样了x个点,我们就说采样率为x赫兹(Hz)。 


3. 量化

 
描述幅度的精度的方式稍微绕一些。首先,整个音频文件的大小是需要控制的,那么我们必然要规定一个幅度的上下限,比如+1和-1。然后我们在这-1~+1的范围内,平均划分为很多个小区间,就可以容纳很精细的幅度采样了。


考虑到我们的电脑其实处理的是二进制的数字,所以我们用1和0来对幅度进行编码,比如我用2位的二进制数字来表示的话,我们可以获得00/01/10/11(十进制中的0、1、2、3)四种不同的值,分别对应-1~+1区间中的-1、-1/3、+1/3、+1这四个点。


这样的精度,我们称之为2个比特(bit)。换言之,2bit的采样深度可以提供2^2=4个不同的幅度区间供采样点选择。如果我们要提升精度的话,就要提升二进制数的大小,比如我们可以增加到4位二进制数来表示不同的幅度值,那我们可以获得2^4=16个不同的采样幅度。这称为4bit的采样深度。以此类推,我们可以继续增加到8bit、16bit、24bit等等。 


我们把这个过程叫做量化(Quantify)。 


不同量化精度的差别

认识了这个方法之后,问题又来了:我们需要什么样的精度呢? 我们先听几个音频,这是一段频段丰富的电子音乐:



可以听到,随着采样率的增加,我们能听到更多的细节,声音越来越清晰了。这说明采样率在一定的区间内是可以切实影响我们的听觉的。

 

再听这几个音频,这是一段背景声干净的吉他扫弦:


可以发现24bit和16bit的深度下,基本听不出差别(也可能和微信的文件压缩相关),但是随着比特降低到8bit甚至4bit,我们已经可以听到非常严重的噪声干扰了。


24bit和4bit采样下的波形差别(幅度范围为-1到+1)

这说明采样深度的不同会导致数字音频中的噪声的变化。这个噪声的来源就是我们之前图中展示的——采样到的信号点和原始的波形的差异。当这个差异很小的时候(比如16bit和24bit下),这个噪声就无法感知了。

 

采样率和采样深度,这两者需要设置到什么范围呢?背后的原理又是什么呢?我会在下一篇文章中一一解答。



本文作者:艾夫

音乐制作人、编曲人、混音师、艾楽音乐工作室主理人、华中科技大学光电信息专业硕士。

*欢迎原创投稿,请联系本号后台;*文中观点为作者独立观点,不完全代表本号立场,仅供参考交流学习。


从模拟到数字:什么是采样?的评论 (共 条)

分享到微博请遵守国家法律