欢迎光临散文网 会员登陆 & 注册

【数学分析】一道简单数列极限的多种解法

2023-04-11 23:00 作者:Ice_koucha  | 我要投稿

前言:今天突然心血来潮打算开这个坑,大概是记录自己一些想法和当做复习笔记的作用,之前已经做了两个数学的视频,但是做视频有点累,而且不蹭热点就没什么再生数。所以这次尝试用专栏的形式发出来,随便使用一下B站专栏的公式编辑功能,更新完全随缘,既然是第一题,那么就选一个非常简单的问题来讲解,(会用四种不同的方法来解答)话不多说,我们开始吧(为获得最佳阅读体验,建议在PC网页端浏览)。

题目:设a_%7Bn%7D%3D%5Cfrac%7B1%7D%7Bn%2B1%7D%2B%5Cfrac%7B1%7D%7Bn%2B2%7D%2B%5Ccdots%2B%5Cfrac%7B1%7D%7Bn%2Bn%7D,求%20%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%20a_%7Bn%7D%20

分析:为了严谨起见,我们先证明a_%7Bn%7D%20收敛.

先作差,有a_%7Bn%2B1%7D%20-a_%7Bn%7D%3D(%5Cfrac%7B1%7D%7Bn%2B2%7D%20%2B%5Cfrac%7B1%7D%7Bn%2B3%7D%2B%5Ccdots%2B%5Cfrac%7B1%7D%7B2n%2B2%7D)-(%5Cfrac%7B1%7D%7Bn%2B1%7D%2B%5Cfrac%7B1%7D%7Bn%2B2%7D%2B%5Ccdots%2B%5Cfrac%7B1%7D%7Bn%2Bn%7D)%0A

                   %3D%5Cfrac%7B1%7D%7B2n%2B1%7D-%20%5Cfrac%7B1%7D%7B2n%2B2%7D%3E0

因此a_%7Bn%7D%20单调递增.

又因为a_%7Bn%7D%20%3C%5Cfrac%7Bn%7D%7Bn%2B1%7D%20%20%3C1,所以a_%7Bn%7D%20单调递增且有上界,由单调有界原则,a_%7Bn%7D%20收敛.

解法一(利用Riemann积分的定义)

最简单直接的做法,没什么好说的

%5Clim_%7Bn%5Cto%E2%88%9E%7D%20a_%7Bn%7D%20%20%3D%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%20%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5En%20%5Cfrac%7B1%7D%7B1%2B%5Cfrac%7Bi%7D%7Bn%7D%20%7D%20%7D%7Bn%7D%20%3D%5Cint_%7B0%7D%5E%7B1%7D%20%5Cfrac%7B1%7D%7Bx%2B1%7Ddx%3Dln2%20

解法二(利用Euler常数)

先给出下列命题:

①对数不等式:%5Cfrac%7Bx%7D%7B1%2Bx%7D%5Cleq%20%20ln(x%2B1)%5Cleq%20x (当x%3E-1时)

证明:令f(x)%3Dx-ln(x%2B1),注意到f(0)%3D0,由Lagrange中值定理得,

f(x)%3D%5Cfrac%7B%5Cxi%20x%7D%7B%5Cxi%2B1%7D%20%3E0,其中%5Cxi%20介于0x之间,不等式右端得证.对于左端使用类似的方法也可证出.当且仅当x%3D0时两边取等号.

x%3D%5Cfrac%7B1%7D%7Bn%7D%20,得%5Cfrac%7B1%7D%7Bn%2B1%7D%20%3Cln(1%2B%5Cfrac%7B1%7D%7Bn%7D)%3C%5Cfrac%7B1%7D%7Bn%7D%20,其中n为正整数

②数列b_%7Bn%7D%3D1%2B%5Cfrac%7B1%7D%7B2%7D%20%2B%5Cfrac%7B1%7D%7B3%7D%20%2B%5Ccdots%2B%5Cfrac%7B1%7D%7Bn%7D%20-lnn收敛

证明:作差,得

b_%7Bn%2B1%7D-b_%7Bn%7D%20%20%3D%5Cfrac%7B1%7D%7Bn%2B1%7D%20-ln(n%2B1)-lnn

                    %3D%5Cfrac%7B1%7D%7Bn%2B1%7D-ln%20(1%2B%5Cfrac%7B1%7D%7Bn%7D%20)

由①得,%5Cfrac%7B1%7D%7Bn%2B1%7D-ln%20(1%2B%5Cfrac%7B1%7D%7Bn%7D%20)%3C0,所以b_%7Bn%7D%20单调递减。

同时,

b_%7Bn%7D%20%3Eln(1%2B1)%2Bln(1%2B%5Cfrac%7B1%7D%7B2%7D%20)%2Bln(1%2B%5Cfrac%7B1%7D%7B3%7D%20)%2B%5Ccdots%2Bln(1%2B%5Cfrac%7B1%7D%7Bn%7D%20)-lnn%3Dln(1%2B%5Cfrac%7B1%7D%7Bn%7D%20)%3E0

所以b_%7Bn%7D%20单调递减且有下界,由单调有界原则,知b_%7Bn%7D%20收敛.我们把b_%7Bn%7D%20的极限记作%5Cgamma%20,称为Euler常数.

因为b_%7B2n%7D%20b_%7Bn%7D%20的子列,所以ta们会收敛到相同的极限.于是有:

%5Clim_%7Bn%5Cto%E2%88%9E%7D%20a_%7Bn%7D%20%20%3D%5Clim_%7Bn%5Cto%E2%88%9E%7D%20(b_%7B2n%7D%2Bln2n)-(b_%7Bn%7D%2Blnn)

               %3D%5Clim_%7Bn%5Cto%E2%88%9E%7D%20(%5Cgamma%20-%5Cgamma)%2B%20(lnn-lnn)%2Bln2

               %3Dln2

解法三(利用夹逼定理)

由解法二的①知,有

ln(1%2B%5Cfrac%7B1%7D%7Bn%2B1%7D%20)%2Bln(1%2B%5Cfrac%7B1%7D%7Bn%2B2%7D%20)%2B%5Ccdots%2Bln(1%2B%5Cfrac%7B1%7D%7B2n%7D%20)%3Ca_%7Bn%7D%20%3Cln(1%2B%5Cfrac%7B1%7D%7Bn%7D%20)%2Bln(1%2B%5Cfrac%7B1%7D%7Bn%2B1%7D%20)%2B%5Ccdots%2Bln(1%2B%5Cfrac%7B1%7D%7B2n-1%7D%20)

化简,得

ln(2n%2B1)-ln(n%2B1)%3Ca_%7Bn%7D%20%3Cln2n-lnn

又因为%5Clim_%7Bn%5Cto%E2%88%9E%7D%20ln(2n%2B1)-ln(n%2B1)%3D%5Clim_%7Bn%5Cto%E2%88%9E%7Dln(%5Cfrac%7B2n%2B1%7D%7Bn%2B1%7D%20)%3Dln2

%5Clim_%7Bn%5Cto%E2%88%9E%7D%20ln2n-lnn%3D%5Clim_%7Bn%5Cto%E2%88%9E%7Dln2%2Blnn-lnn%3Dln2

由夹逼定理知

%5Clim_%7Bn%5Cto%E2%88%9E%7D%20a_%7Bn%7D%20%3Dln2

解法四(利用Catalan恒等式)

④(Catalan恒等式)

c_%7B2n%7D%20%3D1-%5Cfrac%7B1%7D%7B2%7D%20%2B%5Cfrac%7B1%7D%7B3%7D-%5Cfrac%7B1%7D%7B4%7D%2B%5Ccdots%2B%5Cfrac%7B1%7D%7B2n-1%7D-%5Cfrac%7B1%7D%7B2n%7D

c_%7B2n%7D%20%3D(1%2B%5Cfrac%7B1%7D%7B2%7D%20%2B%5Cfrac%7B1%7D%7B3%7D%20%2B%5Ccdots%2B%5Cfrac%7B1%7D%7B2n-1%7D%2B%5Cfrac%7B1%7D%7B2n%7D)-2(%5Cfrac%7B1%7D%7B2%7D%20%2B%5Cfrac%7B1%7D%7B4%7D%2B%5Ccdots%2B%5Cfrac%7B1%7D%7B2n%7D)

           %3D(1%2B%5Cfrac%7B1%7D%7B2%7D%20%2B%5Cfrac%7B1%7D%7B3%7D%20%2B%5Ccdots%2B%5Cfrac%7B1%7D%7B2n-1%7D%2B%5Cfrac%7B1%7D%7B2n%7D)-(1%2B%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B4%7D%2B%5Ccdots%2B%5Cfrac%7B1%7D%7Bn%7D%20)

           %3D%5Cfrac%7B1%7D%7Bn%2B1%7D%2B%5Cfrac%7B1%7D%7Bn%2B2%7D%2B%5Ccdots%2B%5Cfrac%7B1%7D%7Bn%2Bn%7D

           %3Da_%7Bn%7D%20

2n%5Crightarrow%20%E2%88%9E,注意到ln(x%2B1)Maclaurin级数展开为

ln(x%2B1)%3D%5Csum_%7Bn%3D0%7D%5E%E2%88%9E%5Cfrac%7B(-1)%5En%20%7D%7Bn%2B1%7D%20%20x%5E%7Bn%2B1%7D,收敛域为(-1%2C1%5D,取x%3D1,有

ln(1%2B1)%3D1-%5Cfrac%7B1%7D%7B2%7D%20%2B%5Cfrac%7B1%7D%7B3%7D-%5Cfrac%7B1%7D%7B4%7D%2B%5Ccdots%2B%5Cfrac%7B1%7D%7B2n-1%7D-%5Cfrac%7B1%7D%7B2n%7D%3Dln2

所以%5Clim_%7Bn%5Cto%E2%88%9E%7D%20c_%7B2n%7D%20%20%3D%5Clim_%7Bn%5Cto%E2%88%9E%7D%20a_%7Bn%7D%20%3Dln2

参考文献:

[1]陈纪修,於崇华,金路.数学分析[M].北京:高等教育出版社2018.11

[2]裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社2019.9

[3]谢惠民,恽自求,易法槐,钱定边.数学分析习题课讲义[M].北京:高等教育出版社2018.11

(完)


【数学分析】一道简单数列极限的多种解法的评论 (共 条)

分享到微博请遵守国家法律