欢迎光临散文网 会员登陆 & 注册

较为常规的必要条件探路(2023全国乙,21)

2023-06-09 22:32 作者:数学老顽童  | 我要投稿

(2023全国乙,21)已知函数f%5Cleft(%20x%20%5Cright)%20%3D%5Cleft(%20%5Cfrac%7B1%7D%7Bx%7D%2Ba%20%5Cright)%20%5Cln%20%5Cleft(%201%2Bx%20%5Cright)%20.

(1)当a%3D-1时,求曲线y%3Df%5Cleft(%20x%20%5Cright)%20在点%5Cleft(%201%2Cf%5Cleft(%201%20%5Cright)%20%5Cright)%20处的切线方程;

(2)是否存在ab,使得曲线y%3Df%5Cleft(%20%5Cfrac%7B1%7D%7Bx%7D%20%5Cright)%20关于直线x%3Db对称,若存在,求ab的值,若不存在,说明理由;

(3)若f%5Cleft(%20x%20%5Cright)%20存在极值,求a的取值范围.

解:(1)当a%3D-1时,

f%5Cleft(%20x%20%5Cright)%20%3D%5Cleft(%20%5Cfrac%7B1%7D%7Bx%7D-1%20%5Cright)%20%5Cln%20%5Cleft(%201%2Bx%20%5Cright)%20

f%5Cleft(%201%20%5Cright)%20%3D0,故切点为%5Ccolor%7Bred%7D%7B%5Cleft(%201%2C0%20%5Cright)%20%7D

%5Cbegin%7Baligned%7D%0A%09f'%5Cleft(%20x%20%5Cright)%20%26%3D-%5Cfrac%7B1%7D%7Bx%5E2%7D%5Ccdot%20%5Cln%20%5Cleft(%201%2Bx%20%5Cright)%20%2B%5Cleft(%20%5Cfrac%7B1%7D%7Bx%7D-1%20%5Cright)%20%5Ccdot%20%5Cfrac%7B1%7D%7B1%2Bx%7D%5Ccdot%201%5C%5C%0A%09%26%3D%5Cfrac%7B1-x%7D%7Bx%5Cleft(%201%2Bx%20%5Cright)%7D-%5Cfrac%7B%5Cln%20%5Cleft(%201%2Bx%20%5Cright)%7D%7Bx%5E2%7D%5C%5C%0A%5Cend%7Baligned%7D

f'%5Cleft(%201%20%5Cright)%20%3D%5Ccolor%7Bred%7D%7B-%5Cln%20%202%7D

故所求切线为y-0%3D-%5Cln%20%202%5Ccdot%20%5Cleft(%20x-1%20%5Cright)%20

%5Ccolor%7Bred%7D%7Bx%5Cln%20%202%2By-%5Cln%20%202%3D0%7D.

(2)令

g%5Cleft(%20x%20%5Cright)%20%3Df%5Cleft(%20%5Cfrac%7B1%7D%7Bx%7D%20%5Cright)%20%3D%5Cleft(%20x%2Ba%20%5Cright)%20%5Cln%20%5Cleft(%201%2B%5Cfrac%7B1%7D%7Bx%7D%20%5Cright)%20

由于1%2B%5Cfrac%7B1%7D%7Bx%7D%3E0,故g%5Cleft(%20x%20%5Cright)%20定义域

x%5Cin%20%5Ccolor%7Bred%7D%7B%5Cleft(%20-%5Cinfty%20%2C-1%20%5Cright)%20%5Ccup%20%5Cleft(%200%2C%2B%5Cinfty%20%5Cright)%20%7D

若存在b,使得曲线y%3Dg%5Cleft(%20x%20%5Cright)%20关于直线x%3Db对称,则%5Ccolor%7Bred%7D%7Bb%3D-%5Cfrac%7B1%7D%7B2%7D%7D

%5Cforall%20x%5Cin%20%5Cleft(%20-%5Cinfty%20%2C-1%20%5Cright)%20%5Ccup%20%5Cleft(%200%2C%2B%5Cinfty%20%5Cright)%20

皆有%5Ccolor%7Bred%7D%7Bg%5Cleft(%20-1-x%20%5Cright)%20%3Dg%5Cleft(%20x%20%5Cright)%20%7D,即

%5Cleft(%20-1-x%2Ba%20%5Cright)%20%5Cln%20%5Cleft(%201%2B%5Cfrac%7B1%7D%7B-1-x%7D%20%5Cright)%20%3D%5Cleft(%20x%2Ba%20%5Cright)%20%5Cln%20%5Cleft(%201%2B%5Cfrac%7B1%7D%7Bx%7D%20%5Cright)%20

整理得%5Ccolor%7Bred%7D%7B%5Cleft(%202a-1%20%5Cright)%20%7D%5Cln%20%5Cleft(%201%2B%5Cfrac%7B1%7D%7Bx%7D%20%5Cright)%20%3D0

2a-1%3D0,解得%5Ccolor%7Bred%7D%7Ba%3D%5Cfrac%7B1%7D%7B2%7D%7D.

综上所述:a%3D%5Cfrac%7B1%7D%7B2%7Db%3D-%5Cfrac%7B1%7D%7B2%7D.

(3)求导,得

%5Cbegin%7Baligned%7D%0A%09f'%5Cleft(%20x%20%5Cright)%20%26%3D-%5Cfrac%7B1%7D%7Bx%5E2%7D%5Ccdot%20%5Cln%20%5Cleft(%201%2Bx%20%5Cright)%20%2B%5Cleft(%20%5Cfrac%7B1%7D%7Bx%7D%2Ba%20%5Cright)%20%5Ccdot%20%5Cfrac%7B1%7D%7B1%2Bx%7D%5Ccdot%201%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7Bx%5E2%7D%5Cleft%5B%5Ccolor%7Bred%7D%7B%20%5Cfrac%7Bax%5E2%2Bx%7D%7B1%2Bx%7D-%5Cln%20%5Cleft(%201%2Bx%20%5Cright)%20%7D%5Cright%5D%5C%5C%0A%5Cend%7Baligned%7D

h%5Cleft(%20x%20%5Cright)%20%3D%5Cfrac%7Bax%5E2%2Bx%7D%7B1%2Bx%7D-%5Cln%20%5Cleft(%201%2Bx%20%5Cright)%20

注意到%5Ccolor%7Bred%7D%7Bh%5Cleft(%200%20%5Cright)%20%3D0%7D,求导,得

%5Cbegin%7Baligned%7D%0A%09h'%5Cleft(%20x%20%5Cright)%20%26%3D%5Cfrac%7B%5Cleft(%202ax%2B1%20%5Cright)%20%5Cleft(%201%2Bx%20%5Cright)%20-%5Cleft(%20ax%5E2%2Bx%20%5Cright)%20%5Ccdot%201%7D%7B%5Cleft(%201%2Bx%20%5Cright)%20%5E2%7D-%5Cfrac%7B1%7D%7B1%2Bx%7D%5Ccdot%201%5C%5C%0A%09%26%3D%5Cfrac%7Bx%5Cleft(%20%5Ccolor%7Bred%7D%7Bax%2B2a-1%7D%20%5Cright)%7D%7B%5Cleft(%201%2Bx%20%5Cright)%20%5E2%7D%5C%5C%0A%5Cend%7Baligned%7D

1.%5Ccolor%7Bred%7D%7Ba%5Cleqslant%200%7D

h'%5Cleft(%20x%20%5Cright)%20%3C0,则h%5Cleft(%20x%20%5Cright)%20%5Csearrow%20

h%5Cleft(%20x%20%5Cright)%20%3Ch%5Cleft(%200%20%5Cright)%20%3D0,则f%5Cleft(%20x%20%5Cright)%20%5Csearrow%20

无极值,不合题意;

2.%5Cbegin%7Bcases%7D%09a%3E0%2C%5C%5C%09a%5Ccdot%200%2B2a-1%5Cgeqslant%200%2C%5C%5C%5Cend%7Bcases%7D%5Ccolor%7Bred%7D%7Ba%5Cgeqslant%20%5Cfrac%7B1%7D%7B2%7D%7D

h'%5Cleft(%20x%20%5Cright)%20%3E0,则h%5Cleft(%20x%20%5Cright)%20%5Cnearrow%20

h%5Cleft(%20x%20%5Cright)%20%3Eh%5Cleft(%200%20%5Cright)%20%3D0,则f%5Cleft(%20x%20%5Cright)%20%5Cnearrow%20

无极值,不合题意;

3.%5Cbegin%7Bcases%7D%09a%3E0%2C%5C%5C%09a%5Ccdot%200%2B2a-1%3C0%2C%5C%5C%5Cend%7Bcases%7D%5Ccolor%7Bred%7D%7B0%3Ca%3C%5Cfrac%7B1%7D%7B2%7D%7D

h'%5Cleft(%20x%20%5Cright)%20%3D0,得x%3D%5Cfrac%7B1%7D%7Ba%7D-2

x%5Cin%20%5Cleft(%200%2C%5Cfrac%7B1%7D%7Ba%7D-2%20%5Cright)%20

h'%5Cleft(%20x%20%5Cright)%20%3C0h%5Cleft(%20x%20%5Cright)%20%5Csearrow%20

x%5Cin%20%5Cleft(%20%5Cfrac%7B1%7D%7Ba%7D-2%2C%2B%5Cinfty%20%5Cright)%20

h'%5Cleft(%20x%20%5Cright)%20%3E0h%5Cleft(%20x%20%5Cright)%20%5Cnearrow%20

h%5Cleft(%20x%20%5Cright)%20_%7B%5Cmin%7D%3D%5Ccolor%7Bred%7D%7Bh%5Cleft(%20%5Cfrac%7B1%7D%7Ba%7D-2%20%5Cright)%20%3C%7Dh%5Cleft(%200%20%5Cright)%20%3D%5Ccolor%7Bred%7D%7B0%7D

又因为%5Ccolor%7Bred%7D%7Bh%5Cleft(%20%5Cfrac%7B4%7D%7Ba%5E2%7D%20%5Cright)%20%3E0%7D

%5Cexists%20x_0%5Cin%20%5Ccolor%7Bred%7D%7B%5Cleft(%20%5Cfrac%7B1%7D%7Ba%7D-2%2C%5Cfrac%7B4%7D%7Ba%5E2%7D%20%5Cright)%20%7D,使得h%5Cleft(%20x_0%20%5Cright)%20%3D0

x%5Cin%20%5Cleft(%200%2Cx_0%20%5Cright)%20h%5Cleft(%20x%20%5Cright)%20%3C0f%5Cleft(%20x%20%5Cright)%20%5Csearrow%20

x%5Cin%20%5Cleft(%20x_0%2C%2B%5Cinfty%20%5Cright)%20h%5Cleft(%20x%20%5Cright)%20%3E0f%5Cleft(%20x%20%5Cright)%20%5Cnearrow%20

f%5Cleft(%20x%20%5Cright)%20x%3Dx_0处取得极小值.

综上所述:%5Ccolor%7Bred%7D%7Ba%5Cin%20%5Cleft(%200%2C%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%20%7D.

较为常规的必要条件探路(2023全国乙,21)的评论 (共 条)

分享到微博请遵守国家法律