江西教师招聘面试说课稿:一元一次方程的概念
一元一次方程的概念说课稿 一元一次方程说课稿 尊敬的各位领导、老师: 大家好!今天说课的内容是人教版义务教育教科书七年级数学(上)3.1.1一元一次方程(第1课时)。下面,我将从以下五个方面对本节课的设计进行说明. 一、教材分析: 1、教材所处的地位和作用: 从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展,从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是 所有代数方程的基础.教科书将本节内容安排在第一节,一方面是对小学学段已经学过的有关算术方法解题和简单方程的运用的进一步发展,另一方面考虑引入一元 一次方程后,可以尽早渗透模型化的思想,使学生尽早接触利用一元一次方程解决实际问题的方法. 《课程标准》对本课时的要求是通过具体实例归纳出方程及一元一次方程的概念,根据相等关系列出方程.让学生在归纳和总结的过程中,初步建立数学模型思想,训练学生主动探究的能力,能结合情境发现并提出问题,体会在解决问题中与他人合作的重要性,获得解决问题的经验. 2、教学目标: 根据课标的要求和本节内容的特点,我从知识技能、数学思考、情感价值观三个方面确定本节课的目标: 知识技能目标 ①通过对实际问题的分析,让学生体验从算术方法到代数方法是一种进步,归纳并理解一元一次方程的概念,领悟一元一次方程的意义和作用. ②在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力. ③使学生经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想. 数学思考目标 用字母表示未知数,找出相等关系,将实际问题抽象为数学问题,通过列方程解决. 情感价值目标: 让学生体会到从算式到方程是数学的进步,渗透化未知为已知的重要数学思想.体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情. 3、重点、难点: 结合以上目标,我在认真研究教材的基础上,立足学生发展的宗旨,确定了本节课的教学重难点. 教学重点:知道什么是方程、一元一次方程,找相等关系列方程. 教学难点:思维习惯的转变,分析数量关系,找相等关系。 二、教学策略: 如何突出重点,突破难点,从而达到教学目标的实现呢?在教学过程我运用了如下教法与手段: 1.生活引路,感知概念背景; 2.比较方法,明确意义; 3.感受过程,形成核心概念; 4.运用新知,巩固方法; 5.归纳总结,巩固发展. 本节课利用多媒体教学平台,从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型.采用教师引导,学生自主探索、观察、归纳的教学方式。 三、学情分析: 根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法.通过对学生原有知识水平的分析,创设情境,使数学回 到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象 概括等能力. 四、教学过程: 本节课的教学过程我设计了以下六个环节: (一) 情景引入 采用教材中的情景 在这个环节中我提出了三个问题: 问题1:从上图中你能获得哪些信息? 问题2:你会用算术方法求吗? 问题3:你会用方程的方法解决这个问题吗? (二)学习新知 在这个环节中,我首先提出一个问题:“如果设中山市到深圳市的路程为x千米,怎样用式子表示中山市与东莞市的距离以及中山市与惠州市的距离?”,这样,学生就会主动结合图形,根据在《整式的加减》中学到的知识解决问题. 通过上述思考过程,学生已经初步了解到寻找已知量与未知量之间存在的相等关系是利用方程解决实际问题的关键所在. 然后我结合上面的过程简单归纳列方程解决实际问题的步骤并给出方程的概念. 解决实际问题的步骤:(1)用字母表示问题中的未知数;(2)根据问题中的相等关系,列出方程.(17世纪的法国数学家迪卡尔最早使用x,y,z等字母表 示未知数,而我国古代则用“天元、地元、人元、物元”等表示未知数,而且要比西方早1000多年,这说明我们中华民族是一个充满智慧和才干的伟大民族.) 在这里我介绍了字母表示未知数的文化背景,其目的就是在文化层面上让学生进一步理解数学、喜爱数学,展示数学的文化魅力,这正是培养学生情感价值观的体现. 方程的概念:含有未知数的等式叫方程.小学里已经给出了方程的概念,这里可适当处理. 在这里我开始向学生渗透列方程解决实际问题的思考程序. (三)讨论交流 讨论1:比较列算式和列方程两种方法的特点. 列算式:只用已知数,表示计算程序,依据是间题中的数量关系; 列方程:可用未知数,表示相等关系,依据是问题中的等量关系。 通过讨论,学生体会到了:用算术方法解题时,列