欢迎光临散文网 会员登陆 & 注册

A multiplicative inverse for a (mod n)

2023-09-29 15:57 作者:第一性原理  | 我要投稿

Modular Arithmetic


Definition 5

 Let n ∈ N and let a,b ∈ Z. We say that a is congruent to b modulo n 

if n|(a−b)

We write this as a ≡ b (mod n).


Theorem 2

Let n∈N and let a,b∈Z. TFAE:("The Following Are Equivalent")

1. a≡b(modn).
2. a and b leave the same remainder when divided by n. 

3. a=b+kn for some k∈Z.


Theorem 3

Let a1,a2,b1,b2 ∈ Z, and let n ∈ N. 

Suppose, further, that a1 ≡ a2 (mod n) and b1 ≡b2 (mod n). Then

1. a1 + b1 ≡ a2 + b2 (mod n).

2. a1b1 ≡ a2b2 (mod n).

3. a1 − b1 ≡ a2 − b2 (mod n).

Ok, this is pretty great, but it’s missing one operation! How do we perform division modulo n? Or even, can we?

As a reminder of how we defined division way back when, we had the following definition for the number 1/n :

Definition 8

Let n ∈ N and let a ∈ Z. We say that u is 

if au ≡ 1 (mod n).

So, in Example 8, we showed that 5 is a multiplicative inverse for 3 modulo 7

5%5Ccdot%203%5Cequiv%2015%5Cequiv%201(%5Cmod%207)

Let’s take a look at another example:

So sometimes inverses exist, and sometimes they don’t. 

1%5Ccdot%201%5Cequiv%201%5Cequiv%201(%5Cmod%206)

5%5Ccdot%205%5Cequiv%2025%5Cequiv%201(%5Cmod%206)

There are common factors between  6  and (2, 3, 4,6).

1%5Ccdot%201%5Cequiv%201%5Cequiv%201(%5Cmod%207)

2%5Ccdot%204%5Cequiv%208%5Cequiv%201(%5Cmod%207)

3%5Ccdot%205%5Cequiv%2015%5Cequiv%201(%5Cmod%207)

4%5Ccdot%202%5Cequiv%208%5Cequiv%201(%5Cmod%207)

5%5Ccdot%203%5Cequiv%2015%5Cequiv%201(%5Cmod%207)

6%5Ccdot%206%5Cequiv%2036%5Cequiv%201(%5Cmod%207)

There are common factors between  7 and 7.

1%5Ccdot%201%5Cequiv%201%5Cequiv%201(%5Cmod%208)

3%5Ccdot%203%5Cequiv%209%5Cequiv%201(%5Cmod%208)

5%5Ccdot%205%5Cequiv%2025%5Cequiv%201(%5Cmod%208)

7%5Ccdot%207%5Cequiv%2049%5Cequiv%201(%5Cmod%208)

There are common factors between  8 and (2,4,6,8).

Examining the above 3 examples, you might notice a pattern: multiplicative inverses do not exist anytime the number we are interested in shares a factor with the modulus. This, in general, is the feature we are looking for.


Theorem 4. 

Let n ∈ N and a ∈ Z. Then a has a multiplicative inverse modulo n 

if and only if a ⊥ n.


example:

1 ⊥ 6

5 ⊥ 6


1 ⊥ 7

2 ⊥ 7

3 ⊥ 7

4 ⊥ 7

5 ⊥ 7

6 ⊥ 7


1 ⊥ 8

3 ⊥ 8

5 ⊥ 8

7 ⊥ 8

A multiplicative inverse for a (mod n)的评论 (共 条)

分享到微博请遵守国家法律