高等代数知识结构
高等代数知识结构
一、高等代数知识结构图

编辑切换为居中

编辑
二、高等代数知识结构内容
(一)线性代数:
工具:线性方程组
1.行列式:

编辑
乘此行列式。
性质3.如果某一行是两组数的和,那么这个行列式就等于两个行列式的和,而这两个行列式除这一行以外与原行列式的对应行一样。
性质4.如果行列式中两行相同,那么行列式为零。(两行相同就是说两行对应元素都相同)
性质5.如果行列式中两行成比例。那么行列式为零。
性质6.把一行的倍数加到另一行,行列式不变。
性质7.对换行列式中两行的位置,行列式反号。
2.矩阵:
a.矩阵的秩:矩阵A中非零行的个数叫做矩阵的秩。
b.矩阵的运算
定义 同型矩阵:指两个矩阵对应的行数相等、对应的列数相等的矩阵.

编辑
矩阵的等价变换形式主要有如下几种:
1)矩阵的i行(列)与j行(列)的位置互换;
2)用一个非零常数k乘矩阵的第i行(列)的每个元;
3)将矩阵的第j行(列)的所有元得k倍加到第i行(列)的对应元上去。
3.线性方程组
一般线性方程组.这里所指的一般线性方程组形式为

编辑
a.线性方程组的解法
1)消元法
在初等代数里,我们已经学过用代入消元法和加减消元法解简单的二元、三元线性方程组.实际上,这个方法比用行列式解方程组更具有普遍性.但对于那些高元的线性方程组来说,消元法是比较繁琐的,不易使用.
2)应用克莱姆法则
对于未知个数与方程个数相等的情形,我们有
定理1 如果含有
个方程的
元线性方程组

编辑

编辑
4.向量相关性
a.判断向量组线性相关的方法
1)线性相关
2)的对应分量成比例线性相关
3)含有零向量的向量组是线性相关的
4)向量组线性相关该组中至少有一个向量可由其余的向量线性表出5)部分相关则整体相关
6)设向量组可由向量组线性表出,如果r>s,则线性相关;
7)n+1个n维向量必线性相关(个数大于维数)
8)该向量组的秩小于它所含向量的个数向量组线性相关
9)n个n维的向量构成的行列式=0 该向量组是线性相关的
10)线性相关向量组中每个向量截短之后还相关
b.判断向量组线性无关的方法
1)线性无关
2)的对应分量不成比例 线性无关
3)向量组线性无关该组中任何一个向量都不能由其余的向量线性表出
4)整体无关则部分无关
5)线性无关向量组中每个向量加长之后还无关
6)该向量组的秩等于它所含向量的个数 向量组线性无关
7)n个n维的向量构成的行列式0 该向量组是线性无关的
(二)中心课题:线性规范型
1.二次型 线性流型:
二次型及其矩阵表示

编辑

编辑切换为居中

编辑

编辑