欢迎光临散文网 会员登陆 & 注册

利用第三定义进行“对称化改造”(2020课标Ⅰ圆锥曲线)

2022-07-11 10:42 作者:数学老顽童  | 我要投稿

(2020课标Ⅰ,20)已知 AB分别为椭圆E%5Cfrac%7Bx%5E2%7D%7Ba%5E2%7D%2By%5E2%3D1a%3E1)的左、右顶点,GE的上顶点,%5Coverrightarrow%7BAG%7D%5Ccdot%20%5Coverrightarrow%7BGB%7D%3D8.P为直线x%3D6上的动点,PAE的另一交点为CPBE的另一交点为D.

(1)求E的方程;

(2)证明:直线CD过定点.

解:(1)易知ABG的坐标分别为%5Cleft(%20-a%2C0%20%5Cright)%5Cleft(%20a%2C0%20%5Cright)%5Cleft(0%2C1%20%5Cright)

%5Coverrightarrow%7BAG%7D%3D%5Cleft(%20a%2C1%20%5Cright)%20%5Coverrightarrow%7BGB%7D%3D%5Cleft(%20a%2C-1%20%5Cright)%20

%5Coverrightarrow%7BAG%7D%5Ccdot%20%5Coverrightarrow%7BGB%7D%3Da%5E2-1%3D8

解得a%3D3

E的方程为%5Cfrac%7Bx%5E2%7D%7B9%7D%2By%5E2%3D1.

(2)先画个图

P%5Cleft(%206%2Cy_0%20%5Cright)%20,则

k_%7BCA%7D%3Dk_%7BPA%7D%3D%5Cfrac%7By_0%7D%7B6%2B3%7D%3D%5Cfrac%7By_0%7D%7B9%7D

k_%7BDB%7D%3Dk_%7BPB%7D%3D%5Cfrac%7By_0%7D%7B6-3%7D%3D%5Cfrac%7By_0%7D%7B3%7D

所以k_%7BCA%7D%3D%5Cfrac%7B1%7D%7B3%7Dk_%7BDB%7D……(%5Coplus%20

C%5Cleft(%20x_1%2Cy_1%20%5Cright)%20D%5Cleft(%20x_2%2Cy_2%20%5Cright)%20

易知%5Cfrac%7Bx_%7B1%7D%5E%7B2%7D%7D%7B9%7D%2By_%7B1%7D%5E%7B2%7D%3D1

所以y_%7B1%7D%5E%7B2%7D%3D1-%5Cfrac%7Bx_%7B1%7D%5E%7B2%7D%7D%7B9%7D

所以y_%7B1%7D%5E%7B2%7D%3D-%5Cfrac%7B1%7D%7B9%7D%5Cleft(%20x_%7B1%7D%5E%7B2%7D-9%20%5Cright)%20

所以%5Cfrac%7By_%7B1%7D%5E%7B2%7D%7D%7Bx_%7B1%7D%5E%7B2%7D-9%7D%3D-%5Cfrac%7B1%7D%7B9%7D

所以%5Cfrac%7By_%7B1%7D%5E%7B2%7D%7D%7B%5Cleft(%20x_1%2B3%20%5Cright)%20%5Cleft(%20x_1-3%20%5Cright)%7D%3D-%5Cfrac%7B1%7D%7B9%7D

所以%5Cfrac%7By_1%7D%7Bx_1%2B3%7D%5Ccdot%20%5Cfrac%7By_1%7D%7Bx_1-3%7D%3D-%5Cfrac%7B1%7D%7B9%7D

k_%7BCA%7D%5Ccdot%20k_%7BCB%7D%3D-%5Cfrac%7B1%7D%7B9%7D……(%5Cotimes%20

椭圆的第三定义

由(%5Coplus%20)、(%5Cotimes%20)可知

k_%7BCB%7D%5Ccdot%20k_%7BDB%7D%3D-%5Cfrac%7B1%7D%7B3%7D.

故原命题转化为:

已知k_%7BCB%7D%5Ccdot%20k_%7BDB%7D%3D-%5Cfrac%7B1%7D%7B3%7D证明:直线CD过定点.

下面是证明过程(方法:齐次化联立)

E的方程可改写为

%5Cfrac%7B%5Cleft(%20x-3%20%5Cright)%20%5E2%2B6x-9%7D%7B9%7D%2By%5E2%3D1

进一步整理

%5Cfrac%7B%5Cleft(%20x-3%20%5Cright)%20%5E2%7D%7B9%7D%2By%5E2%2B%5Cfrac%7B2%7D%7B3%7D%5Cleft(%20x-3%20%5Cright)%20%3D0

设直线CD的方程为

m%5Cleft(%20x-3%20%5Cright)%20%2Bny%3D1

E联立,得

%5Cfrac%7B%5Cleft(%20x-3%20%5Cright)%20%5E2%7D%7B9%7D%2By%5E2%2B%5Cfrac%7B2%7D%7B3%7D%5Cleft(%20x-3%20%5Cright)%20%5Cleft%5B%20m%5Cleft(%20x-3%20%5Cright)%20%2Bny%20%5Cright%5D%20%3D0

展开

%5Cfrac%7B%5Cleft(%20x-3%20%5Cright)%20%5E2%7D%7B9%7D%2By%5E2%2B%5Cfrac%7B2%7D%7B3%7Dm%5Cleft(%20x-3%20%5Cright)%20%5E2%2B%5Cfrac%7B2%7D%7B3%7Dny%5Cleft(%20x-3%20%5Cright)%20%3D0

并项

y%5E2%2B%5Cfrac%7B2%7D%7B3%7Dny%5Cleft(%20x-3%20%5Cright)%20%2B%5Cleft(%20%5Cfrac%7B2%7D%7B3%7Dm%2B%5Cfrac%7B1%7D%7B9%7D%20%5Cright)%20%5Cleft(%20x-3%20%5Cright)%20%5E2%3D0

各项同除以%5Cleft(%20x-3%20%5Cright)%5E2,得

%5Cleft(%20%5Cfrac%7By%7D%7Bx-3%7D%20%5Cright)%20%5E2%2B%5Cfrac%7B2%7D%7B3%7Dn%5Ccdot%20%5Cfrac%7By%7D%7Bx-3%7D%2B%5Cfrac%7B2%7D%7B3%7Dm%2B%5Cfrac%7B1%7D%7B9%7D%3D0

k_%7BCB%7D%5Ccdot%20k_%7BDB%7D%3D%5Cfrac%7B2%7D%7B3%7Dm%2B%5Cfrac%7B1%7D%7B9%7D%3D-%5Cfrac%7B1%7D%7B3%7D

解得m%3D-%5Cfrac%7B2%7D%7B3%7D

故直线CD的方程为

-%5Cfrac%7B2%7D%7B3%7D%5Cleft(%20x-3%20%5Cright)%20%2Bny%3D1

y%3D0,则x%3D%5Cfrac%7B3%7D%7B2%7D

故直线CD过定点%5Cleft(%5Cfrac%7B3%7D%7B2%7D%20%2C0%5Cright).

利用第三定义进行“对称化改造”(2020课标Ⅰ圆锥曲线)的评论 (共 条)

分享到微博请遵守国家法律