欢迎光临散文网 会员登陆 & 注册

[Series] Harmonic Series

2021-10-01 09:30 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (郑涛)

【Problem】

The harmonic series is an infinite series given by the sum of reciprocals.

%20%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B1%7D%7Bn%7D%20%3D%201%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B3%7D%20%2B%20...

Part 1: Use the comparison test to prove that the harmonic series is divergent.

Part 2: Use the integral test to prove that the harmonic series is divergent.

【Solution】

Part 1: Comparison Test

Group the terms in the Harmonic series as follows:

1%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%2B%20%5Cleft(%5Cfrac%7B1%7D%7B3%7D%20%2B%20%5Cfrac%7B1%7D%7B4%7D%20%5Cright)%20%2B%20%5Cleft(%5Cfrac%7B1%7D%7B5%7D%20%2B%20%5Cfrac%7B1%7D%7B6%7D%20%2B%20%5Cfrac%7B1%7D%7B7%7D%20%2B%20%5Cfrac%7B1%7D%7B8%7D%5Cright)%20%2B%20...

It can be shown that each bracket grouped above is always greater than %5Cfrac%7B1%7D%7B2%7D%20:

%5Cfrac%7B1%7D%7B3%7D%20%2B%20%5Cfrac%7B1%7D%7B4%7D%20%3E%20%20%5Cfrac%7B1%7D%7B4%7D%20%2B%20%5Cfrac%7B1%7D%7B4%7D%20%20

%20%5Cfrac%7B1%7D%7B3%7D%20%2B%20%5Cfrac%7B1%7D%7B4%7D%20%3E%20%20%5Cfrac%7B1%7D%7B2%7D%20%20

1%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B3%7D%20%2B%20%5Cfrac%7B1%7D%7B4%7D%20%2B%20%5Cfrac%7B1%7D%7B5%7D%20%2B%20%5Cfrac%7B1%7D%7B6%7D%20%2B%20%5Cfrac%7B1%7D%7B7%7D%20%2B%20%5Cfrac%7B1%7D%7B8%7D%20%2B%20...%0A%3E%201%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%2B%20...

%5Cfrac%7B1%7D%7B5%7D%20%2B%20%5Cfrac%7B1%7D%7B6%7D%20%2B%20%5Cfrac%7B1%7D%7B7%7D%20%2B%20%5Cfrac%7B1%7D%7B8%7D%20%3E%20%5Cfrac%7B1%7D%7B2%7D


Therefore,

1%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B3%7D%20%2B%20%5Cfrac%7B1%7D%7B4%7D%20%2B%20%5Cfrac%7B1%7D%7B5%7D%20%2B%20%5Cfrac%7B1%7D%7B6%7D%20%2B%20%5Cfrac%7B1%7D%7B7%7D%20%2B%20%5Cfrac%7B1%7D%7B8%7D%20%2B%20...%0A%3E%201%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%2B%20...

Since

1%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%2B%20...%20%3D%20%5Clim_%7Bn%20%5Crightarrow%20%5Cinfty%7D%20%5Cleft(1%20%2B%20%5Cfrac%7Bn%7D%7B2%7D%20%5Cright)%20%3D%20%5Cinfty

it follows that

1%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B3%7D%20%2B%20%5Cfrac%7B1%7D%7B4%7D%20%2B%20%5Cfrac%7B1%7D%7B5%7D%20%2B%20%5Cfrac%7B1%7D%7B6%7D%20%2B%20%5Cfrac%7B1%7D%7B7%7D%20%2B%20%5Cfrac%7B1%7D%7B8%7D%20%2B%20...%20%3D%20%5Cinfty


Part 2: Integral Test


%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B1%7D%7Bn%7D%20%3E%20%5Cint_%7B1%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B1%7D%7Bx%7D%20dx


%5Cint_%7B1%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B1%7D%7Bx%7D%20dx%20%3D%20%5Clim_%7Bb%20%5Crightarrow%20%5Cinfty%7D%20%5Cleft(%5Cln%7B(x)%7D%20%5CBiggr%7C_1%5Eb%20%5Cright)


%20%5Cint_%7B1%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B1%7D%7Bx%7D%20dx%20%3D%20%5Cinfty%20


Therefore,

%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B1%7D%7Bn%7D%20%3D%20%5Cinfty


【Historical Note】

This result in Part 1 (using the comparison test) was a proof by the Medieval French theologian, philosopher, and mathematician Nicole Oresme (c. 1325 - 1382 AD).


[Series] Harmonic Series的评论 (共 条)

分享到微博请遵守国家法律