欢迎光临散文网 会员登陆 & 注册

[Trigonometry] Triple-angle Sine

2021-10-08 09:54 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (郑涛)

【Problem】

In the "Treatise on the Chord and Sine", the Persian astronomer and mathematician Jamshid al-Kashi (1380 - 1429) used the trigonometric identity %5Csin(3x)%20%3D%203%5Csin(x)%20-%204%5Csin%5E3(x) to calculate %5Csin%20%7B1%7D%5E%7B%5Ccirc%7D%20 accurate to 18 decimal places (%5Csin%20%7B1%7D%5E%7B%5Ccirc%7D%20%3D%200.017452406437283571). Use the trigonometric identities %5Csin(2x)%20%3D%202%5Csin(x)%5Ccos(x) and %5Ccos(2x)%20%3D%201-2%5Csin%5E2(x)%20  to prove that %5Csin(3x)%20%3D%203%5Csin(x)%20-%204%5Csin%5E3(x).

【Solution】

Use the angle sum formula %5Csin(x%2By)%20%3D%20%5Csin(x)%5Ccos(y)%20%2B%20%5Ccos(x)%5Csin(y) and make the substitution y%20%3D%202x.

%5Csin(x%2B2x)%20%3D%20%5Csin(x)%5Ccos(2x)%20%2B%20%5Ccos(x)%5Csin(2x)

Substitute the double-angle formulas for sine and cosine into the above formula: 

%5Csin(2x)%20%3D%202%5Csin(x)%5Ccos(x)

%5Ccos(2x)%20%3D%201-2%5Csin%5E2(x)

Subsequently,

%20%5Csin(x%2B2x)%20%3D%20%5Csin(x)%20%5Ccdot%20%5Cleft%5B1-2%5Csin%5E2(x)%5Cright%5D%20%2B%20%5Ccos(x)%20%5Ccdot%20%5Cleft%5B2%5Csin(x)%5Ccos(x)%5Cright%5D

%5Csin(3x)%20%3D%20%5Csin(x)%20-%202%5Csin%5E3(x)%20%2B%202%5Csin(x)%5Ccos%5E2(x)%20


Since %5Ccos(2x)%20%3D%201-2%5Csin%5E2(x),

%5Csin(3x)%20%3D%20%5Csin(x)%20-%202%5Csin%5E3(x)%20%2B%202%5Csin(x)%20%5Ccdot%20%5Cleft%5B1%20-%20%5Csin%5E2(x)%5Cright%5D

%5Csin(3x)%20%3D%20%5Csin(x)%20-%202%5Csin%5E3(x)%20%2B%202%5Csin(x)%20-%202%5Csin%5E3(x)

%5Csin(3x)%20%3D%203%5Csin(x)%20-%204%5Csin%5E3(x)


【Additional Problem】

Using the same trigonometric identities, prove that

%5Ccos(3x)%20%3D%204%5Ccos%5E3(x)%20-%203%5Ccos(x)


[Trigonometry] Triple-angle Sine的评论 (共 条)

分享到微博请遵守国家法律