欢迎光临散文网 会员登陆 & 注册

老年人必看!如何预防慢性炎症?世界顶级老龄化研究所为您解析

2023-06-30 10:21 作者:时光派官方  | 我要投稿



随着年龄增长,慢性炎症逐渐成为困扰人们的问题,也是衰老研究领域的学者们重点关注的话题。2023年更新的“衰老十二大标识”中新增了“慢性炎症”板块,曾有学者预言,它的加入是一种必然。

慢性炎症不仅是近年衰老研究的热点,更与其他衰老标识有着莫大的关联。接下来我们就跟随世界顶尖老龄化研究中心巴克研究所近日发表的一篇综述,开启抗炎、抗衰之旅。

这篇综述发表于权威期刊Molecular metabolism,系统说明了衰老如何导致机体的促炎和抗炎机制失衡,造成慢性炎症,不断推进衰老进程特别将其与衰老十二大标识”中的其他标识联合阐述,整理成分子机制网络,为人们理解衰老、干预衰老提供了新的见解和靶点[1]。派派将其梳理如下,供读者参考。


PART 1 衰老标识:基本、拮抗与综合


理解慢性炎症与其他衰老标识之间的具体关系,先从什么是“衰老标识”讲起。(如果已经了解衰老标识,可跳至下一部分综述正文

衰老标识是与衰老进程密切相关的造成机体损伤的生物标志物,分为三类:基本标识、拮抗标识和综合标识[2]

基本标识是指无论单独或协同作用均可导致分子和细胞水平的损伤的衰老标识,包括基因组不稳定、端粒磨损、表观遗传改变、蛋白质稳态失衡及巨自噬失活

拮抗标识是指对基本标识造成的损害的反应,最初有助于减轻损害,但长时间激活、积累反而会造成损害,导致衰老。包括营养感知失调、线粒体功能障碍和细胞衰老

综合标识是指,当衰老组织的稳态机制无法解决基本标识和拮抗标识造成的损害时,就会出现的标识。包括细胞间通讯改变、肠道微生物失调、干细胞耗竭及慢性炎症


图注:衰老十二大标识的分类,慢性炎症属于综合标识。Primary: 基本;Antagonistic: 拮抗;Integrative: 综合。

PART 2 慢性炎症与三类衰老标识的相互作用关系


慢性炎症来源于机体为了消除损伤开启的免疫反应初衷是为了“灭火”但当体内的“着火点”越来越多、“火”越烧越旺时(损伤不断积累),小范围的免疫反应就变成了侵蚀全身的慢性炎症。

不仅如此,“小火慢烤”还可诱发多种疾病,更与衰老的标志性表现虚弱(frailty)”密切相关。下面派派将介绍慢性炎症如何与上述三类衰老标识相互作用,促进衰老[1],并在文中提供可干预甚至逆转衰老标识的“抗炎密码”。

1.基本标识

基因组不稳定

首先是慢性炎症与细胞内的关键遗传物质——DNA之间的相互作用。DNA损伤会导致慢性炎症,慢性炎症又会加速DNA损伤。

DNA单链断裂可激活“DNA断裂传感器”PARP1,此分子的持续激活会耗尽NAD+,从而抑制下游Sirtuin(Sirt)活性。

Sirt3和Sirt5的耗竭可促进线粒体DNA损伤的积累,导致线粒体功能障碍相关的促炎细胞因子谱。Sirt2的功能受损也会导致NLRP3炎症小体活性升高,加速细胞衰老和改变Sirt依赖性营养感知途径。

除了Sirt途径之外,渗漏进细胞质的DNA还会促使干扰素基因(STING)通路的环GMP-AMP合酶(cGAS)激活TBK1和IRF3,从而诱导I型干扰素(IFN)反应和NF-κB级联反应


图注:慢性炎症与衰老标识相互作用的分子机制图谱。NF-κB堪称枢纽。

NF-κB是衰老相关炎症因子,与IL-4、TGF-β等炎症因子共同促进DNA突变酶AID的表达。AID原本作用于活化B细胞,通过诱导免疫球蛋白基因中的体细胞超突变和类转换重组来产生免疫多样性,然而在慢性炎症条件下,其可在上皮细胞中异常表达,并诱导体细胞突变染色体畸变

研究表明,AID在几种炎症相关癌症,如胃癌[3]、结肠癌[4]和胰腺癌[5]中过表达。

抗炎密码

抑制NF-κB途径,具体物质"衣康酸盐"将与下文“线粒体功能障碍”部分联合阐述。

端粒磨损

端粒缩短会导致炎症。衰老过程中的端粒磨损会激活p53,从而抑制PGC-1α和Sirt3/4/5损害线粒体功能并导致ROS过量产生,由此产生的氧化应激会促进炎症并进一步损害端粒结构。

T细胞的端粒缩短与慢性炎症密切相关[6]。幼稚T细胞数量减少、T细胞受体多样性降低和衰老T细胞的积累促进慢性炎症的产生[7],导致免疫系统对新出现的抗原(例如SARS-CoV-2)的免疫反应受损[8],这在一定程度上解释了老年人更易感染新冠的原因。

炎症也会导致端粒缩短。研究表明,慢性炎症标志物,如 TNF-α和IL-6,与非癌细胞中端粒缩短有关[9]。TNF-α通过p38磷酸化ATF7下调端粒酶活性[10]。衰老相关炎症因子NF-κB的持续激活也会导致肌肉干细胞(MuSC)和肝细胞端粒缩短[11-12]


表观遗传改变

随着衰老研究深入,越来越多证据表明,衰老相关表观遗传改变利于慢性炎症的形成,而慢性炎症又可改变表观遗传模式[13]

表观遗传模式中,DNA甲基化改变与衰老尤为相关。DNA低甲基化和高甲基化均与衰老有关,其中DNA低甲基化可部分归因于DNA甲基转移酶DNMT-1 和 DNMT-3B活性降低[14]。DNA甲基化改变可激活参与炎症反应的基因,如NF-κB、巨噬细胞激活和IFN信号传导相关基因[15]。

慢性炎症也会导致DNA甲基化异常。最近,一项多种族表观基因组关联研究表明,慢性炎症期间C反应蛋白(CRP升高可致DNA甲基化模式改变,这种炎症甲基化特征可以显著增加心血管疾病和慢性阻塞性肺病(COPD)的风险[16]。


蛋白质稳态失衡

蛋白质稳态是确保蛋白质正确合成与折叠、错误折叠蛋白重新折叠和降解的细胞内外调节网络[17]。随着衰老,蛋白质稳态的两个方面——折叠和降解都会减少,导致受损蛋白质和细胞器(也就是细胞内“垃圾”)的累积,此现象称为“垃圾老化”(Garb-aging),会加剧炎症[18]。

泛素蛋白水解系统(UPS)和自噬溶酶体系统(ALS)在蛋白质降解中起着重要作用[19]。随着细胞衰老,受损蛋白不断积累,干扰这两种系统的正常工作,导致多种组织炎症,例如帕金森病中的神经炎症[20]和衰老相关分泌表型(SASP)诱导的炎症[21]


抗炎密码

激活自噬,清除“垃圾老化”!具体见下一部分。

巨自噬失活

自噬是蛋白质稳态系统的重要组成部分,自噬的细胞质清理功能具有抗炎作用[22]

研究发现,老人的CD4+T细胞自噬能力下降,受损线粒体不能被及时清除,导致ROS生成和NF-κB激活,引发慢性炎症和免疫衰老[23]

抗炎密码

亚精胺可诱导转录因子TFEB合成,激活自噬并逆转B细胞衰老[24],改善免疫功能。


2.拮抗标识

营养感知失调

营养与长寿的关系一直备受大家关注。长期营养过剩促衰,而热量限制则有利于长寿。

前文所述Sirt途径与营养感知密切相关。热量限制可通过增加AMP:ATP的比率激活AMPK-Sirtuin通路。Sirtuin是NAD+依赖性脱乙酰酶,AMPK激活可以增加NAD+浓度,导致Sirt1表达,从而使 AMPK上游激活剂LKB-1去乙酰化,形成正反馈回路。

从功能上说,AMPK激活可以通过激活TSC1/2来抑制mTORC1,并刺激Sirts去乙酰化FoxO或自噬相关蛋白(ATG5和ATG7),维持细胞内能量稳态


图注:FoxO是调节细胞死亡、氧化应激、糖代谢、DNA修复等重要过程的关键转录因子。图源[25]

最近研究发现,AMPK直接磷酸化卵泡素相互作用蛋白1(FNIP1),该蛋白与卵泡蛋白(FLCN形成复合物以抑制溶酶体表面mTOR复合物的功能。通过这种作用机制,AMPK能够促进转录因子TFEB导的自噬并诱导溶酶体和线粒体生物发生[26]

高葡萄糖、脂质氨基酸水平革兰氏阴性细菌重要外膜成分脂多糖(LPS,以及促炎细胞因子如TNF-α和NF-κB)水平,也可以抑制AMPK活性[28-30]

抗炎密码

二甲双可激活AMPK,通过增强T细胞自噬,使线粒体功能正常化,缓解年龄和衰老相关的炎症[27]因此,AMPK-Sirt通路在调节慢性炎症中起着重要作用。

线粒体功能障碍

一种学说认为,线粒体起源于17亿年前融合进真核细胞内的古细菌,所以含有独立的遗传物质mtDNA[31]

所以线粒体内容物可被视作“外来物”,一旦线粒体受损,内容物渗漏进细胞质,就成为损伤相关分子模式(DAMPs),诱发炎症。mtDNA线粒体蛋白N-甲酰肽和独特的线粒体脂质(如心磷脂均为线粒体DAMPs。

当细胞内ROS增多导致mtDNA和心磷脂释放到细胞质中时,各种炎症途径被激活,包括NLRP3炎症小体cGAS-STING通路、和NF-κB[32-33]

抗炎密码

衣康酸盐(亚甲基琥珀酸盐)可抑制NF-κB途径,具有抗炎作用[34]。衣康酸盐通过直接修饰参与NF-κB信号传导的关键蛋白质(如IKK和Keap1)上的特定半胱氨酸残基,抑制NF-κB活化,从而抑制促炎基因的表达;还可激活抗炎转录因子NRF-2,NRF-2诱导抗氧化和抗炎基因(包括GPX1和SOD1)的表达[35]。


图注:衣康酸分子式

细胞衰老

衰老细胞可分泌一系列特异性因子,称为衰老相关分泌表型(SASP。SASP被认为可以促进免疫细胞的募集和激活,从而清除衰老细胞。当清除失败时,衰老细胞和SASP积累,导致组织功能下降,促进炎症产生。

促炎SASP包括但不限于IL6、IL8、IL1、粒细胞-巨噬细胞集落刺激因子(GM-CSF)、生长-调节癌基因(growth-regulated oncogene,GRO)α、单核细胞趋化蛋白(MCP)-2、MCP-3、基质金属蛋白酶(MMP)-9/1/3和几个IGF结合蛋白[36-37]

值得注意的是,并非所有SASP都有害。研究表明,衰老细胞还可以分泌刺激组织修复和上皮再生的因子[38]。所以应谨慎使用清除衰老细胞药物Senolytics,不加筛选地清除衰老细胞可能会损害一部分有益作用。

抗炎密码


葡萄籽中的原花青素可清除衰老细胞[55]。

3.综合标识

细胞间通讯改变

细胞间信号传导有多种方式,这里简要介绍慢性炎症与激素细胞外囊之间的联系。

下丘脑-垂体轴(HPA是机体能量平衡、体温、睡眠、血压和昼夜节律稳态的主要调节器。下丘脑微炎症可导致衰老相关的全身慢性炎症及稳态失衡,尤其会导致代谢综合征[39]。另外,雌激素睾酮的下降也可能促进炎症[40-41]


细胞外囊泡是衰老研究中的新兴领域,其来源于多泡体或脂质膜,内含蛋白质、脂质和核苷酸。细胞外囊泡可传递促炎介质,促进肿瘤和自身免疫性疾病的发生发展[42]。

抗炎密码

干细胞或“年轻”细胞来源的细胞外囊泡可延长健康寿命,比如间充质干细胞来源的小细胞外囊泡可减轻氧化应激诱导的内皮细胞衰老[43]。

干细胞耗竭

干细胞是可再生细胞,可替换各种组织和器官中的受损细胞,促进组织修复。慢性炎症可导致干细胞过早衰老,加速干细胞耗竭,而抑制NF-κB可恢复衰老的干细胞功能[44-45]

干细胞重编程也可起到抗炎与抗衰功效。多项体内和体外研究已证明,“山中因子”Oct3/4、Sox2、Klf4、c-Myc诱导的瞬时重编程在小鼠和人类细胞中导致表观遗传时钟显著逆转,炎症特征减少,并恢复患病或衰老细胞失去的功能[46-48]


除了重编程以外,将年轻小鼠的粪便微生物群移植到老年小鼠体内,也被证明可恢复衰老造血干细胞再生能力[49]。

肠道微生物失调

越来越多的证据表明,肠道微生物失调与肠道屏障受损、肥胖和慢性炎症性疾病密切相关[50]。肠道微生物组可衡量健康个体的衰老程度,并且肠道微生物组时钟显示,Ⅰ型糖尿病患者衰老加速[51]。

除了肠道微生物会对神经系统衰老产生影响,口腔微生物也与神经系统炎症和神经退行性疾病(如阿尔茨海默病)有关。口腔中的变形链球菌牙龈卟啉单胞菌与β-淀粉样蛋白的形成及其在大脑中的积累tau蛋白磷酸化以及阿尔茨海默病患者的神经炎症有关[52]

抗炎密码

丁酸(Butyrate是一种可起到抗炎作用的微生物代谢物,可抑制NF-κB通路[53]并调节辅助性T细胞17(Th17)和调节性T细胞(Treg)分化。普拉梭菌可产生丁酸,此物质已被证明可改善结肠炎[54]。


图注:普拉梭菌衍生的丁酸盐对结肠炎的抗炎作用示意图。

时光派点评

我们的细胞浸润在细胞外液构成的内环境中。在慢性炎症条件下,炎性细胞因子充斥在细胞周围的液体环境中,造成从细胞到组织、从组织到器官层面的系统性功能紊乱。

了解慢性炎症及其与其他衰老标识之间的相互作用,有助于我们更深刻地理解衰老、延缓衰老。

测衰才能抗衰,时光派最新推出的“时光尺3.0”服务建立了完整的五维检测体系,其中包含“炎性与免疫衰老”一大板块,系统检测慢性炎症问题,欢迎您的关注。

参考文献:

[1] Baechle, J., Chen, N., Makhijani, P., Winer, S., Furman, D., & Winer, D. (2023). Chronic inflammation and the hallmarks of aging. Molecular Metabolism, 101755. doi: 10.1016/j.molmet.2023.101755

[2] López-Otín, C., Blasco, M., Partridge, L., Serrano, M., & Kroemer, G. (2023). Hallmarks of aging: An expanding universe. Cell, 186(2), 243-278. doi: 10.1016/j.cell.2022.11.001

[3] Chiba, T., Marusawa, H., & Ushijima, T. (2012). Inflammation-Associated Cancer Development in Digestive Organs: Mechanisms and Roles for Genetic and Epigenetic Modulation. Gastroenterology, 143(3), 550-563. doi: 10.1053/j.gastro.2012.07.009

[4] Gushima, M., Hirahashi, M., Matsumoto, T., Fujita, K., Ohuchida, K., Oda, Y., Yao, T., Iida, M., & Tsuneyoshi, M. (2011). Expression of activation-induced cytidine deaminase in ulcerative colitis-associated carcinogenesis. Histopathology, 59(3), 460–469. doi: 10.1111/j.1365-2559.2011.03965.x

[5] Sawai, Y., Kodama, Y., Shimizu, T., Ota, Y., Maruno, T., & Eso, Y. et al. (2015). Activation-Induced Cytidine Deaminase Contributes to Pancreatic Tumorigenesis by Inducing Tumor-Related Gene Mutations. Cancer Research, 75(16), 3292-3301. doi: 10.1158/0008-5472.can-14-3028

[6] Mittelbrunn, M., & Kroemer, G. (2021). Hallmarks of T cell aging. Nature Immunology, 22(6), 687-698. doi: 10.1038/s41590-021-00927-z

[7] Laphanuwat, P., Gomes, D. C. O., & Akbar, A. N. (2023). Senescent T cells: Beneficial and detrimental roles. Immunological reviews, 10.1111/imr.13206. Advance online publication. doi: 10.1111/imr.13206

[8] Aviv, A. (2022). The bullwhip effect, T-cell telomeres, and SARS-CoV-2. The Lancet Healthy Longevity, 3(10), e715-e721. doi: 10.1016/s2666-7568(22)00190-8

[9] Slusher, A., Zúñiga, T., & Acevedo, E. (2019). Inflamm-Aging Is Associated with Lower Plasma PTX3 Concentrations and an Impaired Capacity of PBMCs to Express hTERT following LPS Stimulation. Mediators Of Inflammation, 2019, 1-13. doi: 10.1155/2019/2324193

[10] Maekawa, T., Liu, B., Nakai, D., Yoshida, K., Nakamura, K., & Yasukawa, M. et al. (2018). ATF7 mediates TNF-α–induced telomere shortening. Nucleic Acids Research, 46(9), 4487-4504. doi: 10.1093/nar/gky155

[11] Tichy, E., Ma, N., Sidibe, D., Loro, E., Kocan, J., & Chen, D. et al. (2021). Persistent NF-κB activation in muscle stem cells induces proliferation-independent telomere shortening. Cell Reports, 35(6), 109098. doi: 10.1016/j.celrep.2021.109098

[12] Jurk, D., Wilson, C., Passos, J., Oakley, F., Correia-Melo, C., & Greaves, L. et al. (2014). Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nature Communications, 5(1). doi: 10.1038/ncomms5172

[13] Nardini, C., Moreau, J., Gensous, N., Ravaioli, F., Garagnani, P., & Bacalini, M. (2018). The epigenetics of inflammaging: The contribution of age-related heterochromatin loss and locus-specific remodelling and the modulation by environmental stimuli. Seminars In Immunology, 40, 49-60. doi: 10.1016/j.smim.2018.10.009

[14] Saul, D., & Kosinsky, R. (2021). Epigenetics of Aging and Aging-Associated Diseases. International Journal Of Molecular Sciences, 22(1), 401. doi: 10.3390/ijms22010401

[15] Sarkar, A., Liu, N. Q., Magallanes, J., Tassey, J., Lee, S., Shkhyan, R., Lee, Y., Lu, J., Ouyang, Y., Tang, H., Bian, F., Tao, L., Segil, N., Ernst, J., Lyons, K., Horvath, S., & Evseenko, D. (2023). STAT3 promotes a youthful epigenetic state in articular chondrocytes. Aging cell, 22(2), e13773. doi: 10.1111/acel.13773

[16] Wielscher, M., Mandaviya, P., Kuehnel, B., Joehanes, R., Mustafa, R., & Robinson, O. et al. (2022). DNA methylation signature of chronic low-grade inflammation and its role in cardio-respiratory diseases. Nature Communications, 13(1). doi: 10.1038/s41467-022-29792-6

[17] Frankowska, N., Lisowska, K., & Witkowski, J. (2022). Proteolysis dysfunction in the process of aging and age-related diseases. Frontiers In Aging, 3. doi: 10.3389/fragi.2022.927630

[18] Franceschi, C., Garagnani, P., Vitale, G., Capri, M., & Salvioli, S. (2017). Inflammaging and ‘Garb-aging’. Trends In Endocrinology &Amp; Metabolism, 28(3), 199-212. doi: 10.1016/j.tem.2016.09.005

[19] Frankowska, N., Lisowska, K., & Witkowski, J. (2022). Proteolysis dysfunction in the process of aging and age-related diseases. Frontiers In Aging, 3. doi: 10.3389/fragi.2022.927630

[20] Kulkarni, A., Preeti, K., Tryphena, K., Srivastava, S., Singh, S., & Khatri, D. (2023). Proteostasis in Parkinson's disease: Recent development and possible implication in diagnosis and therapeutics. Ageing Research Reviews, 84, 101816. doi: 10.1016/j.arr.2022.101816

[21] Abbadie, C., & Pluquet, O. (2020). Unfolded Protein Response (UPR) Controls Major Senescence Hallmarks. Trends In Biochemical Sciences, 45(5), 371-374. doi: 10.1016/j.tibs.2020.02.005

[22] Deretic, V., & Levine, B. (2018). Autophagy balances inflammation in innate immunity. Autophagy, 14(2), 243–251. doi: 10.1080/15548627.2017.1402992

[23] Bektas, A., Schurman, S. H., Gonzalez-Freire, M., Dunn, C. A., Singh, A. K., Macian, F., Cuervo, A. M., Sen, R., & Ferrucci, L. (2019). Age-associated changes in human CD4+ T cells point to mitochondrial dysfunction consequent to impaired autophagy. Aging, 11(21), 9234–9263. doi: 10.18632/aging.102438

[24] Zhang, H., Alsaleh, G., Feltham, J., Sun, Y., Napolitano, G., Riffelmacher, T., Charles, P., Frau, L., Hublitz, P., Yu, Z., Mohammed, S., Ballabio, A., Balabanov, S., Mellor, J., & Simon, A. K. (2019). Polyamines Control eIF5A Hypusination, TFEB Translation, and Autophagy to Reverse B Cell Senescence. Molecular cell, 76(1), 110–125.e9. doi: 10.1016/j.molcel.2019.08.005

[25] Carter, M. E., & Brunet, A. (2007). FOXO transcription factors. Current Biology, 17(4), R113-R114.

[26] Malik, N., Ferreira, B. I., Hollstein, P. E., Curtis, S. D., Trefts, E., Weiser Novak, S., Yu, J., Gilson, R., Hellberg, K., Fang, L., Sheridan, A., Hah, N., Shadel, G. S., Manor, U., & Shaw, R. J. (2023). Induction of lysosomal and mitochondrial biogenesis by AMPK phosphorylation of FNIP1. Science (New York, N.Y.), 380(6642), eabj5559. doi: 10.1126/science.abj5559

[27] Bharath, L. P., Agrawal, M., McCambridge, G., Nicholas, D. A., Hasturk, H., Liu, J., Jiang, K., Liu, R., Guo, Z., Deeney, J., Apovian, C. M., Snyder-Cappione, J., Hawk, G. S., Fleeman, R. M., Pihl, R. M. F., Thompson, K., Belkina, A. C., Cui, L., Proctor, E. A., Kern, P. A., … Nikolajczyk, B. S. (2020). Metformin Enhances Autophagy and Normalizes Mitochondrial Function to Alleviate Aging-Associated Inflammation. Cell metabolism, 32(1), 44–55.e6. doi: 10.1016/j.cmet.2020.04.015

[28] Sag, D., Carling, D., Stout, R., & Suttles, J. (2008). Adenosine 5′-Monophosphate-Activated Protein Kinase Promotes Macrophage Polarization to an Anti-Inflammatory Functional Phenotype. The Journal Of Immunology, 181(12), 8633-8641. doi: 10.4049/jimmunol.181.12.8633

[29] Nath, N., Khan, M., Rattan, R., Mangalam, A., Makkar, R., & Meester, C. et al. (2009). Loss of AMPK exacerbates experimental autoimmune encephalomyelitis disease severity. Biochemical And Biophysical Research Communications, 386(1), 16-20. doi: 10.1016/j.bbrc.2009.05.106

[30] Viollet, B., Horman, S., Leclerc, J., Lantier, L., Foretz, M., Billaud, M., Giri, S., & Andreelli, F. (2010). AMPK inhibition in health and disease. Critical reviews in biochemistry and molecular biology, 45(4), 276–295. doi: 10.3109/10409238.2010.488215

[31] Dyall, S. D., Brown, M. T., & Johnson, P. J. (2004). Ancient invasions: from endosymbionts to organelles. Science (New York, N.Y.), 304(5668), 253–257. doi: 10.1126/science.1094884

[32] Marchi, S., Guilbaud, E., Tait, S., Yamazaki, T., & Galluzzi, L. (2022). Mitochondrial control of inflammation. Nature Reviews Immunology, 23(3), 159-173. doi: 10.1038/s41577-022-00760-x

[33] Yu, J., Nagasu, H., Murakami, T., Hoang, H., Broderick, L., Hoffman, H. M., & Horng, T. (2014). Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy. Proceedings of the National Academy of Sciences of the United States of America, 111(43), 15514–15519. doi: 10.1073/pnas.1414859111

[34] Melguizo Madrid, E., González-Rodríguez, C., Ávila-García, M. G., Arrobas-Velilla, T., & Fernández-Riejos, P. (2017). Zenit RA evaluation, a solid-phase chemiluminescence immunoassay for detection of anti-cellular antibodies. Bioanalysis, 9(5), 435–445. doi: 10.4155/bio-2016-0252

[35] Tegegne, M., Fekadu, S., & Assem, A. (2021). Prevalence of Strabismus and Its Associated Factors Among School-Age Children Living in Bahir Dar City: A Community-Based Cross-Sectional Study. Clinical Optometry, Volume 13, 103-112. doi: 10.2147/opto.s300124

[36] Basisty, N., Kale, A., Jeon, O. H., Kuehnemann, C., Payne, T., Rao, C., Holtz, A., Shah, S., Sharma, V., Ferrucci, L., Campisi, J., & Schilling, B. (2020). A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS biology, 18(1), e3000599. doi: 10.1371/journal.pbio.3000599

[37] Schafer, M., Zhang, X., Kumar, A., Atkinson, E., Zhu, Y., & Jachim, S. et al. (2020). The senescence-associated secretome as an indicator of age and medical risk. JCI Insight, 5(12). doi: 10.1172/jci.insight.133668

[38] Reyes, N. S., Krasilnikov, M., Allen, N. C., Lee, J. Y., Hyams, B., Zhou, M., Ravishankar, S., Cassandras, M., Wang, C., Khan, I., Matatia, P., Johmura, Y., Molofsky, A., Matthay, M., Nakanishi, M., Sheppard, D., Campisi, J., & Peng, T. (2022). Sentinel p16INK4a+ cells in the basement membrane form a reparative niche in the lung. Science (New York, N.Y.), 378(6616), 192–201. doi: 10.1126/science.abf3326

[39] Tang, Y., Purkayastha, S., & Cai, D. (2015). Hypothalamic microinflammation: a common basis of metabolic syndrome and aging. Trends In Neurosciences, 38(1), 36-44. doi: 10.1016/j.tins.2014.10.002

[40] P Priyanka, H., & S Nair, R. (2020). Neuroimmunomodulation by estrogen in health and disease. AIMS Neuroscience, 7(4), 401-417. doi: 10.3934/neuroscience.2020025

[41] Walecki, M., Eisel, F., Klug, J., Baal, N., Paradowska-Dogan, A., Wahle, E., Hackstein, H., Meinhardt, A., & Fijak, M. (2015). Androgen receptor modulates Foxp3 expression in CD4+CD25+Foxp3+ regulatory T-cells. Molecular biology of the cell, 26(15), 2845–2857. doi: 10.1091/mbc.E14-08-1323

[42] Makhijani, P., & McGaha, T. L. (2022). Myeloid Responses to Extracellular Vesicles in Health and Disease. Frontiers in immunology, 13, 818538. doi: 10.3389/fimmu.2022.818538

[43] Xiao, X., Xu, M., Yu, H., Wang, L., Li, X., Rak, J., Wang, S., & Zhao, R. C. (2021). Mesenchymal stem cell-derived small extracellular vesicles mitigate oxidative stress-induced senescence in endothelial cells via regulation of miR-146a/Src. Signal transduction and targeted therapy, 6(1), 354. doi: 10.1038/s41392-021-00765-3

[44] Bogeska, R., Mikecin, A. M., Kaschutnig, P., Fawaz, M., Büchler-Schäff, M., Le, D., Ganuza, M., Vollmer, A., Paffenholz, S. V., Asada, N., Rodriguez-Correa, E., Frauhammer, F., Buettner, F., Ball, M., Knoch, J., Stäble, S., Walter, D., Petri, A., Carreño-Gonzalez, M. J., Wagner, V., … Milsom, M. D. (2022). Inflammatory exposure drives long-lived impairment of hematopoietic stem cell self-renewal activity and accelerated aging. Cell stem cell, 29(8), 1273–1284.e8. doi: 10.1016/j.stem.2022.06.012

[45] Josephson, A. M., Bradaschia-Correa, V., Lee, S., Leclerc, K., Patel, K. S., Muinos Lopez, E., Litwa, H. P., Neibart, S. S., Kadiyala, M., Wong, M. Z., Mizrahi, M. M., Yim, N. L., Ramme, A. J., Egol, K. A., & Leucht, P. (2019). Age-related inflammation triggers skeletal stem/progenitor cell dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 6995–7004. doi: 10.1073/pnas.1810692116

[46] Yang, J. H., Hayano, M., Griffin, P. T., Amorim, J. A., Bonkowski, M. S., Apostolides, J. K., Salfati, E. L., Blanchette, M., Munding, E. M., Bhakta, M., Chew, Y. C., Guo, W., Yang, X., Maybury-Lewis, S., Tian, X., Ross, J. M., Coppotelli, G., Meer, M. V., Rogers-Hammond, R., Vera, D. L., … Sinclair, D. A. (2023). Loss of epigenetic information as a cause of mammalian aging. Cell, 186(2), 305–326.e27. doi: 10.1016/j.cell.2022.12.027

[47] Sarkar, T. J., Quarta, M., Mukherjee, S., Colville, A., Paine, P., Doan, L., Tran, C. M., Chu, C. R., Horvath, S., Qi, L. S., Bhutani, N., Rando, T. A., & Sebastiano, V. (2020). Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells. Nature communications, 11(1), 1545. doi: 10.1038/s41467-020-15174-3

[48] Gill, D., Parry, A., Santos, F., Okkenhaug, H., Todd, C. D., Hernando-Herraez, I., Stubbs, T. M., Milagre, I., & Reik, W. (2022). Multi-omic rejuvenation of human cells by maturation phase transient reprogramming. eLife, 11, e71624. doi: 10.7554/eLife.71624

[49] Zeng, X., Li, X., Li, X., Wei, C., Shi, C., Hu, K., Kong, D., Luo, Q., Xu, Y., Shan, W., Zhang, M., Shi, J., Feng, J., Han, Y., Huang, H., & Qian, P. (2023). Fecal microbiota transplantation from young mice rejuvenates aged hematopoietic stem cells by suppressing inflammation. Blood, 141(14), 1691–1707. doi: 10.1182/blood.2022017514

[50] Shemtov, S. J., Emani, R., Bielska, O., Covarrubias, A. J., Verdin, E., Andersen, J. K., & Winer, D. A. (2022). The intestinal immune system and gut barrier function in obesity and ageing. The FEBS journal, 10.1111/febs.16558. Advance online publication. doi: 10.1111/febs.16558

[51] Galkin, F., Mamoshina, P., Aliper, A., Putin, E., Moskalev, V., Gladyshev, V. N., & Zhavoronkov, A. (2020). Human Gut Microbiome Aging Clock Based on Taxonomic Profiling and Deep Learning. iScience, 23(6), 101199. doi: 10.1016/j.isci.2020.101199

[52] Molinero, N., Antón-Fernández, A., Hernández, F., Ávila, J., Bartolomé, B., & Moreno-Arribas, M. V. (2023). Gut Microbiota, an Additional Hallmark of Human Aging and Neurodegeneration. Neuroscience, 518, 141–161. doi: 10.1016/j.neuroscience.2023.02.014

[53] Segain, J. P., Raingeard de la Blétière, D., Bourreille, A., Leray, V., Gervois, N., Rosales, C., Ferrier, L., Bonnet, C., Blottière, H. M., & Galmiche, J. P. (2000). Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn's disease. Gut, 47(3), 397–403. doi: 10.1136/gut.47.3.397

[54] Zhou, L., Zhang, M., Wang, Y., Dorfman, R. G., Liu, H., Yu, T., Chen, X., Tang, D., Xu, L., Yin, Y., Pan, Y., Zhou, Q., Zhou, Y., & Yu, C. (2018). Faecalibacteriumprausnitzii Produces Butyrate to Maintain Th17/Treg Balance and to Ameliorate Colorectal Colitis by Inhibiting Histone Deacetylase 1. Inflammatory bowel diseases, 24(9), 1926–1940. doi: 10.1093/ibd/izy182

[55]Xu, Q., Fu, Q., Li, Z., Liu, H., Wang, Y., & Lin, X. et al. (2021). The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. Nature Metabolism, 3(12), 1706-1726. doi: 10.1038/s42255-021-00491-8


老年人必看!如何预防慢性炎症?世界顶级老龄化研究所为您解析的评论 (共 条)

分享到微博请遵守国家法律