2024年电子科技大学832微电子器件考研考试大纲
对于想要报考微电子器件考研的考生来说,考研大纲一直是考生关心的重点,有了大纲,才能更明确自己的备考方向,少走很多的复习弯路。为帮助考生了解院校招考信息,研晟考研整理了微电子器件考研大纲,供考生参考。
研晟考研
,专注清华北大等985/211名校考研辅导,拥有完善的服务团队,专属定制化的考研备考规划,力争实现每位学子的考研梦、名校梦。 考试科目832微电子器件 考试形式笔试(闭卷) 考试时间180分钟考试总分150分 一、总体要求 主要考察学生掌握“微电子器件”的基本知识、基本理论的情况,以及用这些基本知识和基本理论分析问题和解决问题的能力。 二、内容 1.半导体物理基础知识 2.半导体器件基本方程 1)半导体器件基本方程的物理意义 2)一维形式的半导体器件基本方程 3)基本方程的主要简化形式 3.PN结 1)突变结与线性缓变结的定义 2)PN结空间电荷区的形成 3)耗尽近似与中性近似 4)耗尽区宽度、内建电场与内建电势的计算 5)正向及反向电压下PN结中的载流子运动情况 6)PN结的能带图 7)PN结的少子分布图 8)PN结的直流伏安特性 9)PN结反向饱和电流的计算及影响因素 10)薄基区二极管的特点 11)大注入效应 12)PN结雪崩击穿的机理、雪崩击穿电压的计算及影响因素、齐纳击穿的机理及特点、热击穿的机理 13)PN结势垒电容与扩散电容的定义、计算与特点 14)PN结的交流小信号参数与等效电路 15)PN结的开关特性与少子存储效应 4.双极型晶体管 1)双极型晶体管在四种工作状态下的少子分布图与能带图 2)基区输运系数与发射结注入效率的定义及计算 3)共基极与共发射极直流电流放大系数的定义及计算 4)基区渡越时间的概念及计算 5)缓变基区晶体管的结构与电学特性 6)小电流时电流放大系数的下降 7)发射区重掺杂效应 8)晶体管的直流电流电压方程、晶体管的直流输出特性曲线图 9)基区宽度调变效应 10)晶体管各种反向电流的定义与测量方法 11)晶体管各种击穿电压的定义与测量方法、基区穿通效应 12)方块电阻的概念及计算 13)晶体管的小信号参数 14)晶体管的电流放大系数与频率的关系、组成晶体管信号延迟时间的四个主要时间常数、高频晶体管特征频率的定义、计算与测量、影响特征频率的主要因素 15)高频晶体管最大功率增益与最高振荡频率的定义与计算,影响功率增益的主要因素 5.绝缘栅场效应晶体管(MOSFET) 1)MOSFET的类型与基本结构 2)MOSFET的工作原理 3)MOSFET阈电压的定义、计算与测量、影响阈电压的各种因素、阈电压的衬底偏置效应 4)MOSFET在非饱和区和饱和区的直流电流电压方程 5)MOSFET的饱和漏源电压与饱和漏极电流的定义与计算 6)MOSFET的直流输出特性曲线和转移特性曲线图 7)MOSFET的有效沟道长度调制效应 8)MOSFET的亚阈区特性 9)MOSFET的直流参数及其温度特性 10)MOSFET的小信号参数 11)MOSFET跨导的定义与计算、影响跨导的各种因素 12)MOSFET的高频等效电路及其频率特性 13)MOSFET的主要寄生参数 14)MOSFET的最高工作频率和最高振荡频率的定义、影响最高工作频率的主要因素 15)MOSFET的短沟道效应以及克服短沟道效应的措施 16)MOSFET的恒场等比例缩小法则 6.微电子器件和集成电路的业界新进展 参考教材:《微电子器件》(第四版),陈星弼等,电子工业出版 考研上岸在很多人的心里估计都是比较难的,不论是在职还是在校,专业课想拿高分?复习全局难把握?经验贴踩雷无数,关键期错过提升,各种各样的备考问题是不是一大堆?靠自学,没有方法,没有动力,相信这是很多人的内心写照,研晟考研,助力考生有效备考,专属学习方案,一战上岸。