步进机构 步进编程
1.1、什么是步进电机
步进电机是一种基于电磁感应原理、把电脉冲信号转换为角位移或线位移的开环控制电机,是工业控制系统中一种常见的执行机构(注:工业控制系统由控制器、控制元件、传感器及执行机构组成)。
步进电机的内部由转子和定子组成,下面这张图是一个两相步进电机的外观图:

1.2、步进电机相关的基本概念
1.2.1、相数:是指步进电机定子绕组的组数(即内部线圈的个数)。常见的有两相、三相、四相、五相步进电机;
1.2.2、步距角:步进电机接收一个脉冲信号后所转过的角度,步距角在电机出厂时已经确定,会写在电机上。一般两相电机的步距角为0.9°/1.8°、三相电机的步距角为0.75°/1.5°,五相电机的步距角为0.36°/0.72°;如果不使用细分驱动器,只能靠选择不同步距角的步进电机来满足控制要求。细分驱动器可以改变步进电机的步距角,这个我们将在第二节《认识步进驱动器》中介绍;
1.2.3 、保持转矩(holding torque):是指步进电机绕组通电且转子没有转动时,使电机能够移动完整的一步所需要的扭矩。保持转矩主要受电机绕组所允许的最大电流限制,通常大于运行转矩(running torque)。保持转矩是步进电机最重要的参数之一,它的优点在于可以使负载保持在某个位置。在不特别指明的情况下,通常说的步进电机的转矩就是指保持转矩。比如,某步进电机的转矩为3.5NM,就是指其保持扭矩为3.5NM;
1.2.4、阻尼转矩(detent torque):是指步进电机绕组在不通电的情况下,由其本身的机械特性(永磁性结构)所产生的转矩。在不通电的情况下,用手去转动转子可以感受到阻尼转矩;
1.3、步进电机的分类与结构
步进电机的内部由转子(rotor)和定子(stator)组成。
当定子线圈通电时,会产生感应磁场,感应磁场与转子相互作用使转子转过一定的角度。
根据励磁方式的不同,步进电机可分为:永磁式、反应式(磁阻式)和混合式三种。
1.3.1、永磁式(permanent magnet stepper motor)
永磁式步进电机的转子(rotor)是一种永磁性的、柱状结构,具有N极和S极;定子是具有对称结构的励磁线圈;当定子线圈通入直流电后,根据安培右手定律,线圈的两端会产生磁场;定子产生的磁场与转子的永磁性材料相互作用从而使转子转动。通过给定子绕组交替通电,就能控制转子按照某个方向交替运动;
永磁式步进电机的定子/转子结构如下图所示:

1.3.2、反应式(variable reluctance stepper motor)
反应式步进电机也称为磁阻式步进电机,其转子是一个非磁性的、软铁性质的、齿状结构;其定子由励磁线圈组成;由于转子是非磁性结构,因此在定子没有通电之前,定子与转子之间没有任何磁性相互作用。因此,反应式步进电机没有阻尼转矩(detent torque)。
反应式步进电机内部结构示意图如下:

阻尼转矩:功率越大,转矩也越大,铝盘转动也就越快。铝盘转动时,又受到永久磁铁铝盘转动时带动计数机构,永久磁铁是用来阻尼铝盘转动的。
简单的说,一个静动都稳定的系统,既需要一个力或力矩让其回到原平衡状态,又需要一个力或力矩让其在原平衡状态停下,前面那个就叫安定力矩(稳定力矩),后面那个就叫阻尼力矩。举例说明:单摆系统是具有静稳定性的,每当偏离平衡位置,线张力与重力的合力就会将其拉到平衡位置,这个力就是安定力(稳定力),然而如果没有一切阻力,小球永远不会停下,而是会无数次经过平衡位置而不停,这就是缺乏阻尼力而不具有动稳定性,所以,在现实中,这个系统里的空气阻力以及其他阻力就是阻尼力的来源,他们耗散掉系统的能量,使其最终停在平衡位置,从而使系统具有动稳定性。
1.3.3、混合式(hybrid stepper motor)
顾名思义,混合式步进电机结合了永磁式和反应式步进电机的优点,它的转子采用永磁性材料,并且将其分成南极(S极)和北极(N极)两个部分,每个部分又有很多的齿状结构,如下图所示:

混合式步进电机的定子由励磁线圈组成,每一组线圈下面也具有交替分布的齿状结构。如下图所示:

混合式步进电机的步距角小、动态性能好,是使用最广泛的步进电机。下面这张图是混合式步进电机的转子和定子实物图:

1.4、步进电机的特点
步进电机结构简单、使用方便、没有积累误差、只需要脉冲信号就能进行工作,因此既可以使用PLC进行控制,也可以使用单片机等能产生脉冲信号的装置进行控制,在工业自动化控制中使用非常广泛。
不过其噪音和震动较大,并且可能会出现失步的情况,因此只适合于精度要求不高的场合。
另外步进电机的位置和速度信号不能反馈给控制系统,一般只能用于开环控制。如果要构成闭环控制系统,需要在运动轴上增加编码器等信号反馈装置。


PLC:可编程逻辑控制器是种专门为在工业环境下应用而设计的数字运算操作电子系统。它采用一种可编程的存储器,在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,通过数字式或模拟式的输入输出来控制各种类型的机械设备或生产过程。

起源
美国汽车工业生产技术要求的发展促进了PLC的产生,20世纪60年代,美国通用汽车公司在对工厂生产线调整时,发现继电器、接触器控制系统修改难、体积大、噪声大、维护不方便以及可靠性差,于是提出了著名的“通用十条”招标指标。
1969年,美国数字化设备公司研制出第一台可编程控制器(PDP-14),在通用汽车公司的生产线上试用后,效果显著;1971年,日本研制出第一台可编程控制器(DCS-8);1973年,德国研制出第一台可编程控制器;1974年,我国开始研制可编程控制器:1977年,我国在工业应用领域推广PLC。
最初的目的是替代机械开关装置(继电模块)。然而,自从1968年以来,PLC的功能逐渐代替了继电器控制板,现代PLC具有更多的功能。其用途从单一过程控制延伸到整个制造系统的控制和监测。
当可编程逻辑控制器投入运行后,其工作过程一般分为三个阶段,即输入采样、用户程序执行和输出刷新三个阶段。完成上述三个阶段称作一个扫描周期。在整个运行期间,可编程逻辑控制器的CPU以一定的扫描速度重复执行上述三个阶段。
输入采样

可编程逻辑控制器
在输入采样阶段,可编程逻辑控制器以扫描方式依次地读入所有输入状态和数据,并将它们存入I/O映象区中的相应的单元内。输入采样结束后,转入用户程序执行和输出刷新阶段。在这两个阶段中,即使输入状态和数据发生变化,I/O映象区中的相应单元的状态和数据也不会改变。因此,如果输入是脉冲信号,则该脉冲信号的宽度必须大于一个扫描周期,才能保证在任何情况下,该输入均能被读入。 [5]
单片机
单片机(Single-Chip Microcomputer)是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计数器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统,在工业控制领域广泛应用。从上世纪80年代,由当时的4位、8位单片机,发展到现在的300M的高速单片机。
单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。概括的讲:一块芯片就成了一台计算机。它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。同时,学习使用单片机是了解计算机原理与结构的最佳选择。
单片机的使用领域已十分广泛,如智能仪表、实时工控、通讯设备、导航系统、家用电器等
单片机的结构框图如下图所示:

单片机结构框图
运算器
运算器由运算部件——算术逻辑单元(Arithmetic & Logical Unit,简称ALU)、累加器和寄存器等几部分组成。ALU的作用是把传来的数据进行算术或逻辑运算,输入来源为两个8位数据,分别来自累加器和数据寄存器。ALU能完成对这两个数据进行加、减、与、或、比较大小等操作,最后将结果存入累加器。
运算器有两个功能:
(1) 执行各种算术运算。
(2) 执行各种逻辑运算,并进行逻辑测试,如零值测试或两个值的比较。
运算器所执行全部操作都是由控制器发出的控制信号来指挥的,并且,一个算术操作产生一个运算结果,一个逻辑操作产生一个判决。
控制器
控制器由程序计数器、指令寄存器、指令译码器、时序发生器和操作控制器等组成,是发布命令的“决策机构”,即协调和指挥整个微机系统的操作。其主要功能有:
(1) 从内存中取出一条指令,并指出下一条指令在内存中的位置。
(2) 对指令进行译码和测试,并产生相应的操作控制信号,以便于执行规定的动作。
(3) 指挥并控制CPU、内存和输入输出设备之间数据流动的方向。
微处理器内通过内部总线把ALU、计数器、寄存器和控制部分互联,并通过外部总线与外部的存储器、输入输出接口电路联接。外部总线又称为系统总线,分为数据总线DB、地址总线AB和控制总线CB。通过输入输出接口电路,实现与各种外围设备连接。
(1)单片机的体积比较小, 内部芯片作为计算机系统,其结构简单,但是功能完善,使用起来十分方便,可以模块化应用。
(2)单片机有着较高的集成度,可靠性比较强,即使单片机处于长时间的工作也不会存在故障问题。
(3) 单片机在应用时低电压、低能耗,是人们在日常生活中的首要选择, 为生产与研发提供便利。
(4)单片机对数据的处理能力和运算能力较强,可以在各种环境中应用,且有着较强的控制能力。
应用
节能控制
由于智能电子设备可能会被经常携带外出,因此对这些设备的能耗要求是非常高的,所以经常会设计一些节能控制模块,从而提高智能电子设备的待机时长。单片机技术在节能控制中的应用主要分为以下几个方面:第一,智能电子设备在外出状态下,大部分是处于轻负载的模式,这时候就需要通过节能控制,确保其基础功能的前提下,进一步降低电量的消耗。单片机通过对智能电子设备中数据的收集,可以大致推断当前设备处于较低的负载,这时可以降低电压及电流的输出,达到节能的目的;第二,单片机可以控制能耗的节奏,例如:在小米手环中,收集人体的心率、睡眠和运动步数等数字,这些数字收集后会在本地进行存储,然后以分钟级的频率进行上报;信息未上报时,设备处于低能耗的状态,信息上报时,会出现一些网络传输方面的消耗,单片机可以控制能耗的节奏,将手环的大部分时间控制在低能耗的状态下,可以使得待机时间长达七十二小时以上。
智能语音设备
为了更好地提高智能电子设备的智能性,可以允许人类通过简单的语言进行控制,实现语音人机交互的目的。目前,语音处理芯片已经开发完成,并开始运用到智能电子设备中。单片机在智能语音设备中的应用,主要分为以下两个部分:第一,软件设置方面,由于单片机可以通过编程的方式,处理一些业务逻辑,因此就能够对智能语音处理过程进行操作。例如:在导航智能电子设备中,可以将其中的一些道路名称、距离等进行提取,然后进行播报;同时,还可以选择不同的名人口吻进行播报,真正实现智能化的定制操作,更好地满足用户的需求;第二,硬件设计方面,由于智能语音设备对资源的消耗比较大,因此为了更好地延长产品的待机时间,会使用单片机技术动态控制产品的功率,进一步降低对电量的消耗。同时,还可以通过单片机技术,提高硬件的响应时间,进一步提高用户的体验。 [4]
报警控制
对于部分电子设备来讲,会拥有自动报警的设置,报警控制也是单片机技术经常使用的领域,主要体现在以下几个方面:第一,对于一些自动报警装置来讲,例如:家里经常使用的火灾报警器,就是在外界环境达到一定条件下开启智能报警的设备,如果室内的烟雾浓度到达某种水平,或者是收集外界的数据达到某种状态时,就会自动触发报警设置,从而实现智能报警的功能;第二,对于一些智能电子设备来讲,如果外在环境超过设备的工作环境范围时,或者是设备存在一些异常情况时,就会触发自身的报警机制,让用户能够及时了解设备的运作详情,并且根据报警信息提供解决方案。例如:在一些工厂中,经常会安装一些设备,对工厂的生产环境进行监控,当出现某些异常数据时,就会发生报警,为确保设备的正常运作,设备维护人员需要及时进行处理,避免产生较大的故障。
医疗设备
随着医疗设备技术的不断提升,单片机开始在医疗设备中进行广泛的应用,主要体现在:第一,对病人的身体特征数据进行智能监控,可以将一些医疗设备安装在病人身上,并对其身体的数据进行收集,然后与后台的控制系统进行交互,如果发现病人的身体特征异常时,会及时产生报警。例如:部分医疗设备可以针对病人的心跳、脉搏、血压等进行监控,如果发现异常会及时呼叫医生进行处理;第二,在手术过程中,也会使用一些智能电子设备,例如:部分手术需要进入病人的体内进行,在避免开刀的情况下,可以通过控制智能设备完成手术的过程,进一步降低病人的痛苦,提高病人身体恢复的速度;第三,智能体检数据分析设备,可以将用户的体检数据录入进去,然后输入到分析设备后,通过与正常数据的对比,及时对用户的身体疾病进行预测和诊断。随着我国医疗技术水平的不断提高,单片机技术的应用变得越来越广泛,提高了医疗技术水平,更好地维护病人的健康。 [4]
应用特点
单片机拥有以下几种应用特点:(1)拥有良好的集成度; (2)单片机自身体积较小;(3)单片机拥有强大的控制功能,同时运行电压比较低;(4)单片机拥有简易携带等优势, 同时性价比较高。单片机主要应用于下面几种领域当中,分别是:自动化办公、机电一体化、尖端武器和国防军事领域、 航空航天领域、汽车电子设备、医用设备领域、商业营销设备、计算机通讯、家电领域、日常生活和实时控制领域等
(1)使用寿命。寿命主要指以下2方面:单片机开发产品拥有良好的稳定性和较长的使用寿命,可以长时间稳定运行10年或是20多年;与微处理器相比拥有较长的使用寿命。随着半导体技术的不断提高,MPU更新换代速度的不断提升,部分已经成功上市,同时年龄较小的CPU核心同样会随着I/O模块的发展而不断丰富,生存周期较长。随着新型CPU产品的出现,单片机领域也不断扩展,用户选择余地也相继增加。目前单片机的主要发展趋势就是32位、16位和8位单片机的共同进步。最初单片机主要是从8位开始的,随着多媒体技术、互联网技术和移动通讯技术的发展,32位单片机逐渐发展起来。比如32位的CPU单片机Mororola68k曾经就实现过八千万枚的销量,而16位单片机的发展从产量和品种两种层面上看也有着巨大的进步,呈现出增长的态势。 [5]
(2)运行速度。MUP发展中的主要是不断提升速度,主要是以时钟频率为主要标志,时钟频率逐渐增高。但是单片机却和MUP存在一定的差异,为了进一步提升单片机的抗干扰能力,减少噪音影响,单片机在发展过程中逐渐开始从降低时钟频率入手,为此不惜降低运算效率。从单片机内部系统入手,改变内在时序,在不提升时钟频率的基础上,进一步提高了单片机的运算速度。 [5]
(3)高可靠性和低噪音技术。首先是EFT技术属于抗干扰技术,主要是振荡电路中的正弦信号被外部的环境所影响时,其所发出的波形就叠加各种毛刺信号,而人们在处理过程中也经常利用施密特电路进行整形,随后电路振荡毛刺就会变成触发信号干扰的时钟,交替利用RC滤波电路和施密特电路能够有效消除毛刺作用,让影响失效,促进系统时钟信号的顺利传输。进一步提升单片机稳定性。其次是驱动技术和低噪音的布线技术,传统单片机通常是将地线和电源设置在电路外壳中的对称引脚位置,大都是在右上左下、左上右下两部分对称位置中,如此让电源噪音顺利穿过整个芯片,干扰单片机内部电路。大部分单片机都将电源引脚与地线设置在两个相邻引脚中,这样能够有效减少穿过整个芯片的电流,同时还能在印刷电路板中设置去耦电容,进一步减少噪声影响。 [5]
(4)掩膜与OTP。OTP属于一次性输入的单机片,过去将投产掩膜的单片机当作单片机产品成熟的标志,因为掩膜拥有相应的生产周期,同时OTP型号的单片机价格也不断降低,因此通过OTP进行产品制造逐渐成为近几年的发展趋势。与掩膜方式比较起来,拥有风险小、生产周期短等优势。在社会发现新时期,OTP型号的单片机需求量也不断上涨。
程序编写方法如下:
设定电机脉冲数,这个是死的,可以不写。 12800或者其它数值。
设定要分的等份数:129 代入数据寄存器D 或者V
计算出每个等份须要的整数脉冲数:12800/129=99
精确计算出每个等份须要的脉冲数,浮点运算得到的结果是:12800/129=99.2248062
把99转为浮点数,得到数据为99.0
然后用99.2248062—99.0=0.2248062 这个计算公式得到了每个等份剩下脉冲数。
用剩下的脉冲数再乘上等份总数:0.2248062x129=28.99999998.去掉小数点,得到整数28.
用等份数减去28得到:129-28=101。本数据为加工过程中的等份数。
程序运行到:己经加了的等份大于101,也就是从102等份开始到129等份,这28个等份里面,每个等份加一个脉冲。也就是从102等份开始的脉冲数为99+1=100.
如上计算,在后28个等份里面,每个等份增加一个脉冲,也就是每个等份增加了1/100.
用PLC控制步进电机的相关指令说明
这些指令主要是针对用PLC直接联动伺服放大器,目的是可以不借助其他扩展设备(例如1GM模块)来进行简单的点位控制,使用这些指令时最好配合三菱的伺服放大器(如MR-J2)。然而,我们也可以用这些指令来控制步进电机的运行,下面我们来了解相关指令的用法:
这些介绍的指令只适用于FX1S、FX1N系列的晶体管输出PLC,如FX1N-60MT。
1、脉冲输出指令PLSY(FNC57)
PLSY指令用于产生指定数量的脉冲。助记法为HZ、数目Y出来。指令执行如下:

2、带加减速的脉冲输出指令PLSR(FNC59)

3、回原点ZRN(FNC156)--------重点撑握
ZRN指令用于校准机械原点。助记法为高速、减速至原点。指令执行如下:

4、增量驱动DRVI(FNC158)--------重点撑握
DRVI为单速增量驱动方式脉冲输出指令。这个指令与脉冲输出指令类似但又有区别,
只是根据数据脉冲的正负多了个转向输出。本指令执行如下:

5、绝对位置驱动指令DRVA(FNC159)
本指令与DRVI增量驱动形式与数值上基本一样,唯一不同之处在于[S1.]:
在增量驱动中,[S1.]指定的是距离,也就是想要发送的脉冲数;而在绝对位置驱动指令中,[S1.]定义的是目标位置与原点间的距离,即目标的绝对位置。

下面以此次的设备为例,说明步进电机的驱动方法:
在用步进电机之前,可以考虑以下几个相关的问题:
1、何谓步进电机的步距角?何为整步、半步?何谓步进电机的细分数?
2、用步进电机拖动丝杆移动一定的距离,其脉冲数是如何估算的?
3、在步进顺控中运用点位指令应注意什么?(切断电源的先后问题!)
步进电机测试程序与接线如下:
1、按下启动按钮,丝杆回原点,5秒钟后向中间移动,2秒后回到原点。

注:步进电机正数为后退,Y2亮,负数为向前,Y2不亮。向前方为向(3#带侧)运动为,向后为向(1#带侧)运动。