欢迎光临散文网 会员登陆 & 注册

Differential Geometry Notes- Geodesics

2023-04-23 23:24 作者:iLune-  | 我要投稿

最近在学 Do Carmo 的Differential Geometry 和 Carroll 的 Spacetime and Geometry(虽然后者是基于manifold讲的,但是学校教的还是古典微分几何),记录一下学习过程 ovo


1. Definition of geodesics

A curve %5Cgamma on a surface is said to be a geodesic if the geodesic curvature %5Ckappa_g%3D0  at every point of %5Cgamma. Thus, a geodesic curves only because of the curving of the surface – the extent of internal curving is zero. Here, %5Ckappa_g%20%3Ddet(n%2C%5Cgamma'%2C%5Cgamma'')%3D0.

Free particles move along paths of “shortest possible distance,” or geodesics. In other words, particles try their best to move on straight lines, but in a curved spacetime there might not be any straight lines.

Light is always travelling along geodesics (null geodesics, with -dt%5E2%2Ba%5E2(t)(dx%5E2%2Bdy%5E2%2Bdz%5E2)%3D0 )


2. Velocity and accleration vectors

Suppose there exists a diffeomorphism map %7BR%7D%20(u%2C%20v)%20%3D%20(x%20(u%2C%20v)%2C%20y%0A(u%2C%20v)%2C%20z%20(u%2C%20v)) for a regular surface S, and a regular curve %5Cgamma%20(t)%20%3DR%20(u%20(t)%2C%20v%20(t)) that on S , then consider the tangent vector(or velocity vector) is given by:

                           T%3D%7BR%7D_u%20u'%0A%20%20%2B%7BR%7D_v%20v'

then the accleration vector is given by:

                                 %5Cfrac%7Bd%5E2%20%7BR%7D%7D%7Bd%20t%5E2%7D%20%3D%20%5Cfrac%7Bd%7D%7Bd%20t%7D%20%5Cleft(%20%5Cfrac%7B%5Cpartial%0A%20%20%7BR%7D%7D%7B%5Cpartial%20u%7D%20%20%5Cfrac%7Bd%20u%7D%7Bd%20t%7D%20%5Cright)%20%2B%20%5Cfrac%7Bd%7D%7Bd%20t%7D%20%5Cleft(%0A%20%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20v%7D%20%20%5Cfrac%7Bd%20v%7D%7Bd%20t%7D%20%5Cright)

also by chain rule we have:

                                    %5Cfrac%7Bd%7D%7Bd%20t%7D%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20v%7D%3D%5Cfrac%7B%5Cpartial%5E2%0A%20%20%20%7BR%7D%7D%7B%5Cpartial%20u%5E2%7D%20%5Cfrac%7Bd%20u%7D%7Bd%20t%7D%20%2B%20%5Cfrac%7B%5Cpartial%5E2%0A%20%20%20%7BR%7D%7D%7B%5Cpartial%20u%20%5Cpartial%20v%20%7D%20%5Cfrac%7Bd%20v%7D%7Bd%20t%7D

and 

                                    %5Cfrac%7Bd%7D%7Bd%20t%7D%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%7D%20%3D%20%5Cfrac%7B%5Cpartial%5E2%0A%20%20%20%7BR%7D%7D%7B%5Cpartial%20u%5E2%7D%20%5Cfrac%7Bd%20u%7D%7Bd%20t%7D%20%2B%20%5Cfrac%7B%5Cpartial%5E2%0A%20%20%20%7BR%7D%7D%7B%5Cpartial%20u%20%5Cpartial%20v%20%7D%20%5Cfrac%7Bd%20v%7D%7Bd%20t%7D

therefore,  the accleration vector by chain rule above is exactly in the form:

%5Cfrac%7Bd%5E2%20%7BR%7D%7D%7Bd%20t%5E2%7D%20%3D%20%5Cleft(%20%5Cfrac%7B%5Cpartial%5E2%0A%20%20%20%7BR%7D%7D%7B%5Cpartial%20u%5E2%7D%20%5Cfrac%7Bd%20u%7D%7Bd%20t%7D%20%2B%20%5Cfrac%7B%5Cpartial%5E2%0A%20%20%20%7BR%7D%7D%7B%5Cpartial%20u%20%5Cpartial%20v%20%7D%20%5Cfrac%7Bd%20v%7D%7Bd%20t%7D%20%5Cright)%20%5Cfrac%7Bd%20u%7D%7Bd%0A%20%20%20t%7D%20%2B%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%7D%20%5Cfrac%7Bd%5E2%20u%7D%7Bd%20t%5E2%7D%20%2B%20%5Cleft(%0A%20%20%20%5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%5Cpartial%20u%20%5Cpartial%20v%20%7D%20%5Cfrac%7Bd%20u%7D%7Bd%20t%7D%20%2B%0A%20%20%20%5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%7B%5Cpartial%20v%5E2%7D%20%7D%20%5Cfrac%7Bd%20v%7D%7Bd%20t%7D%20%5Cright)%0A%20%20%20%5Cfrac%7Bd%20v%7D%7Bd%20t%7D%20%2B%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20v%7D%20%5Cfrac%7Bd%5E2%20v%7D%7Bd%0A%20%20%20t%5E2%7D

%20%3D%20%5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%5Cpartial%0A%20%20%20u%5E2%7D%20%5Cleft(%20%5Cfrac%7Bd%20u%7D%7Bd%20t%7D%20%5Cright)%5E2%20%2B%20%5Cfrac%7B%5Cpartial%5E2%0A%20%20%20%7BR%7D%7D%7B%5Cpartial%20u%20%5Cpartial%20v%20%7D%20%5Cfrac%7Bd%20v%7D%7Bd%20t%7D%20%5Cfrac%7Bd%20u%7D%7Bd%20t%7D%20%2B%0A%20%20%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%7D%20%5Cfrac%7Bd%5E2%20u%7D%7Bd%20t%5E2%7D%20%2B%0A%20%20%20%5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%5Cpartial%20u%20%5Cpartial%20v%20%7D%20%5Cfrac%7Bd%20u%7D%7Bd%20t%7D%0A%20%20%20%5Cfrac%7Bd%20v%7D%7Bd%20t%7D%20%2B%20%5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%7B%5Cpartial%20v%5E2%7D%20%7D%20%5Cleft(%0A%20%20%20%5Cfrac%7Bd%20v%7D%7Bd%20t%7D%20%5Cright)%5E2%20%2B%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20v%7D%0A%20%20%20%5Cfrac%7Bd%5E2%20v%7D%7Bd%20t%5E2%7D

%3D%20%5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%5Cpartial%20u%5E2%7D%20%5Cleft(%20%5Cfrac%7Bd%20u%7D%7Bd%20t%7D%0A%20%20%20%5Cright)%5E2%20%2B%20%5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%7B%5Cpartial%20v%5E2%7D%20%7D%20%5Cleft(%20%5Cfrac%7Bd%0A%20%20%20v%7D%7Bd%20t%7D%20%5Cright)%5E2%20%2B%202%20%5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%5Cpartial%20u%20%5Cpartial%20v%0A%20%20%20%7D%20%5Cfrac%7Bd%20v%7D%7Bd%20t%7D%20%5Cfrac%7Bd%20u%7D%7Bd%20t%7D%20%2B%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%0A%20%20%20u%7D%20%5Cfrac%7Bd%5E2%20u%7D%7Bd%20t%5E2%7D%20%2B%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20v%7D%20%5Cfrac%7Bd%5E2%0A%20%20%20v%7D%7Bd%20t%5E2%7D


The formular above is very complicated, therefore we apply Einstein notation to simplify.Here, donate  u%5E1%20%3D%20u%2C%20u%5E2%20%3D%20v, obtain:

                           %5Cfrac%7Bd%5E2%20%7BR%7D%7D%7Bd%20t%5E2%7D%20%3D%20%5Cfrac%7Bd%5E2%20u%5Ei%7D%7Bd%20t%5E2%7D%20%5Cfrac%7B%5Cpartial%0A%20%20%7BR%7D%7D%7B%5Cpartial%20u%5Ei%7D%20%2B%20%5Cfrac%7Bd%20u%5Ei%7D%7Bd%20t%7D%20%20%5Cfrac%7Bd%20u%5Ej%7D%7Bd%20t%7D%0A%20%20%5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%5Cpartial%20u%5Ei%20%5Cpartial%20u%5Ej%7D

the first term   %5Cfrac%7B%5Cpartial%0A%7BR%7D%7D%7B%5Cpartial%20u%5Ei%7D indicates the linear combination of natural basis R_u%20 and R_v in tangential space T_p(S).Then we consider the second term %5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%5Cpartial%20u%5Ei%0A%5Cpartial%20u%5Ej%7D.

Actually, the form of %5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%5Cpartial%20u%5Ei%0A%5Cpartial%20u%5Ej%7D indicates the change of basis along the trajectory %5Cgamma(t). To express this change in canonical basis %5C%7BR_u%2CR_v%2Cn%5C%7D, we have the following in Einstein notation :

                %5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%5Cpartial%20u%5Ei%20%5Cpartial%20u%5Ej%7D%20%3D%20%5CGamma%5E1_%7Bi%20j%7D%0A%20%20%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%5E1%7D%20%2B%20%5CGamma%5E2_%7Bij%7D%20%5Cfrac%7B%5Cpartial%0A%20%20%20%7BR%7D%7D%7B%5Cpartial%20u%5E2%7D%20%2B%20L_%7Bi%20j%7D%20%5Chat%7B%7Bn%7D%7D%20%3D%20%5CGamma%5Ek_%7Bi%20j%7D%0A%20%20%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%5Ek%7D%20%2B%20L_%7Bij%7D%20%5Chat%7B%7Bn%7D%7D


Here, since there are 4 directions for change and each direction has 2 basis,

thus there are 8 different %5CGamma%5Ek_%7Bi%20j%7D.The %5CGamma%5Ek_%7Bi%20j%7D is called Christoffel symbol, and the L_%7Bij%7D for the normal component is the second fundamental form of the surface.(Revision for the second fundamental form: L_%7Bij%7D%3D%5Clangle%20R_%7Bij%7D%2Cn%20%5Crangle%3D-%5Clangle%20R_%7Bi%7D%2Cn_%7Bj%7D%20%5Crangle)

Fig.1 Linear combination of tangential and normal
component of change of basis


Christoffel symbols describe how the direction of basis deviates from the straight line. The Christoffel symbols however, indeed describe the chage of grid of the coordinate on the surface.


3.Calculation of Christoffel symbols

3.1. Review of the first fundamental form

First, let's review the first fundamental form of regular surfaces. The 2 tangential vectors at the point p on the surface are R_u(p) and R_v(p), and a trajectory   %5Cgamma%20(t)%20%3DR%20(u%20(t)%2C%20v%20(t)).Also review the tangent vector of the trajectory at p is T%3D%7BR%7D_u%20u'%0A%20%20%2B%7BR%7D_v%20v'.

the first fundamental form is the self inner product of the tangent vector, that is:

I(T)%3D%5Clangle%20T%2CT%5Crangle%3D%5Clangle%20%7BR%7D_u%20u'%0A%20%20%2B%7BR%7D_v%20v'%2C%7BR%7D_u%20u'%0A%20%20%2B%7BR%7D_v%20v'%5Crangle%3D%7BR%7D_u%5E2%20(u')%5E2%2B2R_uR_vu'v'%2BR_%7Bv%7D%5E2(v')%5E2%3DE%20(u')%5E2%2B2Fu'v'%2BG(v')%5E2


In tensor form, the first fundamental form is given by g_%7Bij%7D, which is actually the metric tensor of the surface. In  %5Cmathbb%7BR%5E3%7D, the metric tensor is a 2%20%5Ctimes2  symmetric matrix, with:

                                                       g%3D%5Cbegin%7Bmatrix%7D%0AE%26%20F%20%5C%5C%0AF%26%20G%20%5C%5C%0A%5Cend%7Bmatrix%7D

its inverse, in Einstein notation, is expressed as g%5E%7Bjk%7D, therefore 

                                           g_%7Bik%7D%5Ccdot%20g%5E%7Bkj%7D%3D%5Cdelta_%7Bj%7D%5Ei%3D%0A%5Cbegin%7Barray%7D%7Blr%7D%0A%20%20%20%20%20%20%20%20%20%20%20%20%201%2Ci%3Dj%20%26%20%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%0A%20%20%20%20%20%20%20%20%20%20%20%20%200%20%2Ci%5Cneq%20j%26%20%20%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cend%7Barray%7D%0A

by calculation of inverse matrix, it is trivial to obtain:

                        g%5E%7B22%7D%3D%5Cfrac%7Bg_%7B11%7D%7D%7Bdet(g)%7D%2Cg%5E%7B11%7D%3D%5Cfrac%7Bg_%7B22%7D%7D%7Bdet(g)%7D%2Cg%5E%7B12%7D%3Dg%5E%7B21%7D%3D-%5Cfrac%7Bg_%7B12%7D%7D%7Bdet(g)%7D

3.2. Calculate Christoffel symbols

Remind that the acceleration vector is:

               %5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%5Cpartial%20u%5Ei%20%5Cpartial%20u%5Ej%7D%20%3D%20%5CGamma%5E1_%7Bi%20j%7D%0A%20%20%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%5E1%7D%20%2B%20%5CGamma%5E2_%7Bij%7D%20%5Cfrac%7B%5Cpartial%0A%20%20%20%7BR%7D%7D%7B%5Cpartial%20u%5E2%7D%20%2B%20L_%7Bi%20j%7D%20%5Chat%7B%7Bn%7D%7D%20%3D%20%5CGamma%5Ek_%7Bi%20j%7D%0A%20%20%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%5Ek%7D%20%2B%20L_%7Bij%7D%20%5Chat%7B%7Bn%7D%7D

and noticing the geometric relationship, the normal vector n is perpendicular to the tangent space span%5C%7BR_u%2CR_v%5C%7D, therefore we can calculate the Christoffel symbols by doing inner product, that is:

                   %5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%5Cpartial%20u%5Ei%20%5Cpartial%20u%5Ej%7D%20%5Ccdot%0A%20%20%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%5El%7D%20%3D%20%5CGamma%5E1_%7Bi%2Cj%7D%20%5Cleft(%0A%20%20%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%5E1%7D%20%5Cright)%5E2%20%2B%20%5CGamma%5E2_%7Bi%20j%7D%20%20(%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%5E2%7D%20)%5E2%20%3D%20%5CGamma%5Ek_%7Bi%20j%7D%20%7Bg%7D_%7B%7Bkl%7D%7D%0A

therefore by mutipulying the inverse, we have:

                                           %5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%5Cpartial%20u%5Ei%20%5Cpartial%20u%5Ej%7D%20%5Ccdot%0A%20%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%5E%7B%7Bl%7D%7D%7D%20%5Ccdot%20%7Bg%7D%0A%20%20%5E%7B%7Bl%7Dk%7D%20%3D%20%5CGamma%5Ek_%7Bij%7D

or

                         %5CGamma_%7Bij%7D%5Ek%3D(R_%7Bij%7D%5Ccdot%20R_%7Bl%7D%20)g%5E%7Blk%7D%3D%5Cfrac%7B1%7D%7B2%7D(%5Cfrac%7B%5Cpartial%20g_%7Bil%7D%7D%7B%5Cpartial%20u%5Ej%7D%2B%5Cfrac%7B%5Cpartial%20g_%7Bjl%7D%7D%7B%5Cpartial%20u%5Ej%7D-%5Cfrac%7B%5Cpartial%20g_%7Bij%7D%7D%7B%5Cpartial%20u%5El%7D)g%5E%7Blk%7D

In detail, in an orthonormal coordinate,where F%3D0, we have the following:

%5CGamma%5E1_%7B1%201%7D%20%3D%20%5Cfrac%7BE_u%7D%7B2%20E%7D%2C%20%5CGamma%5E1_%7B1%202%7D%20%3D%20%5CGamma%5E1_%7B2%201%7D%20%3D%0A%20%20%20%5Cfrac%7BE_v%7D%7B2%20E%7D%2C%20%5CGamma%5E1_%7B2%202%7D%20%3D%20%5Cfrac%7B-%20G_u%7D%7B2%20E%7D%5C%5C%20%0A%5CGamma%5E2_%7B1%201%7D%20%3D%20%5Cfrac%7B-%20E_v%7D%7B2%20G%7D%2C%20%5CGamma%5E2_%7B1%202%7D%20%3D%20%5CGamma%5E2_%7B2%201%7D%20%3D%0A%20%20%20%5Cfrac%7BG_u%7D%7B2%20G%7D%2C%20%5CGamma%5E2_%7B2%202%7D%20%3D%20%5Cfrac%7BG_v%7D%7B2%20G%7D%20

4.Geodesics

With the arrangement above, we have the accleration vector below:


              %5Cfrac%7Bd%5E2%20%7BR%7D%7D%7Bd%20t%5E2%7D%20%3D%20%5Cleft(%20%5Cfrac%7Bd%5E2%20u%5Ek%7D%7Bd%20t%5E2%7D%20%2B%0A%20%20%20%5CGamma%5Ek_%7Bi%2C%20j%7D%20%20%5Cfrac%7Bd%20u%5Ei%7D%7Bd%20t%7D%20%20%5Cfrac%7Bd%20u%5Ej%7D%7Bd%20t%7D%20%5Cright)%0A%20%20%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%5Ek%7D%20%2B%20%5Cfrac%7Bd%20u%5Ei%7D%7Bd%20t%7D%20%20%5Cfrac%7Bd%0A%20%20%20u%5Ej%7D%7Bd%20t%7D%20L_%7Bi%2C%20j%7D%20%5Chat%7B%7Bn%7D%7D

By the definition of geodesics, det(n%2C%5Cgamma'%2C%5Cgamma'')%3D0,and because %5Chat%20n%3D%5Cfrac%7BR_u%20%5Ctimes%20R_v%7D%7B%5Cvert%20R_u%20%5Ctimes%20R_v%20%5Cvert%20%7D%0A 

we have:  

   %5Cleft%20(%5Cleft%20(%5Cleft(%20%5Cfrac%7Bd%5E2%20u%5Ek%7D%7Bd%20t%5E2%7D%20%2B%0A%20%20%20%5CGamma%5Ek_%7Bi%2C%20j%7D%20%20%5Cfrac%7Bd%20u%5Ei%7D%7Bd%20t%7D%20%20%5Cfrac%7Bd%20u%5Ej%7D%7Bd%20t%7D%20%5Cright)%0A%20%20%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%5Ek%7D%20%2B%20%5Cfrac%7Bd%20u%5Ei%7D%7Bd%20t%7D%20%20%5Cfrac%7Bd%0A%20%20%20u%5Ej%7D%7Bd%20t%7D%20L_%7Bi%2C%20j%7D%20%5Chat%7B%7Bn%7D%7D%20%5Cright)%5Ctimes%20%5Cleft(%5Cfrac%7B%5Cpartial%0A%20%20%7BR%7D%7D%7B%5Cpartial%20u%5Ek%7D%20%20%5Cfrac%7Bd%20u%5Ek%7D%7Bd%20t%7D%20%5Cright)%5Cright)%5Ccdot%20%20%5Chat%7Bn%7D%3D0

because 

                                               %5Cleft(%5Cfrac%7Bd%20u%5Ej%7D%7Bd%20t%7D%20L_%7Bi%2C%20j%7D%20%5Chat%7B%7Bn%7D%7D%20%5Ctimes%20%5Cfrac%7B%5Cpartial%0A%20%20%7BR%7D%7D%7B%5Cpartial%20u%5Ek%7D%20%20%5Cfrac%7Bd%20u%5Ek%7D%7Bd%20t%7D%20%5Cright)%5Ccdot%20%20%5Chat%7Bn%7D%3D0%0A


therefore %5Ckappa_g%3D0 if and only if

                                                   %5Cfrac%7Bd%5E2%20u%5Ek%7D%7Bd%20t%5E2%7D%20%2B%0A%20%20%20%5CGamma%5Ek_%7Bi%2C%20j%7D%20%20%5Cfrac%7Bd%20u%5Ei%7D%7Bd%20t%7D%20%20%5Cfrac%7Bd%20u%5Ej%7D%7Bd%20t%7D%0A%20%20%20%20%3D0

which is the differential form of geodesics.

Expand Einstein notation, we have the following :

u''%20%2B%20%5CGamma%5E1_%7B11%7D%20(u')%5E2%20%2B%202%20%5CGamma%5E1_%7B1%202%7D%20u'%20v'%20%2B%20%5CGamma%5E1_%7B2%202%7D%20(v')%5E2%0A%20%20%20%3D%200%20%5C%5C%0A%20v''%20%2B%20%5CGamma%5E2_%7B11%7D%20(u')%5E2%20%2B%202%20%5CGamma%5E2_%7B12%7D%20u'%20v'%20%2B%20%5CGamma%5E2_%7B2%202%7D%20(v')%5E2%0A%20%20%20%3D%200%20

With orthonormal basis, the geodesics behaves:

u''%20%2B%20%5Cfrac%7BE_u%7D%7B2%20E%7D%20(u')%5E2%20%2B%20%5Cfrac%7BE_v%7D%7BE%7D%20u'%20v'%20-%20%5Cfrac%7BG_u%7D%7B2%20E%7D%20(v')%5E2%0A%20%20%20%3D%200%20%5C%5C%0A%20v''%20-%20%5Cfrac%7BE_v%7D%7B2%20G%7D%20(u')%5E2%20%2B%20%5Cfrac%7BG_u%7D%7BG%7D%20u'%20v'%20%2B%20%5Cfrac%7BG_v%7D%7B2%20G%7D%20(v')%5E2%0A%20%20%20%3D%200%20

5.Null geodesics

Back to the beginning, consider the null geodesics, in which massless particles are travelling along,like photon. Suppose a path along the x-axis ,then the metric is:

                                                     -dt%5E2%2Ba%5E2(t)dx%5E2%3D0 

With parametrization %5Clambda  , we have:

                                                            %5Cfrac%7Bdx%7D%7Bd%5Clambda%7D%3D%5Cfrac%7B1%7D%7Ba%7D%5Cfrac%7Bdt%7D%7Bd%20%5Clambda%7D 

donate   %5Cdot%20a%3D%5Cfrac%7Bda%7D%7Bdt%7D  ,the null geodesics is :

                                                           %5Cfrac%7Bd%5E2%20t%7D%7Bd%20%5Clambda%5E2%7D%20%2B%0A%20%20%5Cfrac%7B%5Cdot%20a%7D%7Ba%7D%20(%5Cfrac%7Bd%20t%7D%7Bd%20%5Clambda%7D)%5E2%0A%20%20%20%20%3D0

With parametrization of propertime %5Ctau , we have:

                                                     %5Cfrac%7Bd%5E2%20t%7D%7Bd%20%5Ctau%5E2%7D%20%2B%0A%20%5Cdot%20a%20a%20%5Cdelta_%7Bj%7D%5Ei%20%5Cfrac%7Bd%20x%5Ei%7D%7Bd%20%5Ctau%7D%20%5Cfrac%7Bd%20%20x%5Ej%7D%7Bd%20%5Ctau%7D%0A%20%20%20%20%3D0

where 

                                                  %5Ctau%3D%5Cint%20%5Cleft(-g_%7B%5Cmu%20v%7D%20%5Cfrac%7Bdx%5E%5Cmu%7D%7Bd%20%5Clambda%7D%20%5Cfrac%7Bdx%5Ev%7D%7Bd%20%5Clambda%7D%5Cright)%5E%5Cfrac%7B1%7D%7B2%7D%20d%20%5Clambda




















Differential Geometry Notes- Geodesics的评论 (共 条)

分享到微博请遵守国家法律