欢迎光临散文网 会员登陆 & 注册

spq法的简单运用

2023-08-05 12:43 作者:梦违Changer  | 我要投稿

PART 1 准备工作

%E2%80%9Cspq%E2%80%9D方法是解决三元对称不等式的“通法”,是通过换元来简化命题的手段。

对于仅有三个变量a%E3%80%81b%E3%80%81c%5Cin%20R%5E%2B%0A,且关于ab%2Bbc%2Bca%3D1轮换对称的不等式,可以作以下换元:

s%3Da%2Bb%2Bc

q%3Dab%2Bbc%2Bca

p%3Dabc%0A

之后使用仅有s%E3%80%81q%E3%80%81p%0A的不等式对原命题进行放缩,目标是尽量使得p%0A不出现在大于的一端,或者直接消去p%0A

字母使用s%E3%80%81q%E3%80%81p%0A是有其道理的,s%E3%80%81q%E3%80%81p%0A分别为和(sum)、二次轮换和(quadratic)%0A、积(product)的缩写。当然,大多数人使用p%E3%80%81q%E3%80%81r%0A换元,这并未有不同之处。

先给出下面将会用到的不等式:

s%5E2%20%5Cgeq%203q

s%5E3-4sq%2B9p%5Cgeq%200 (三次Schur%0A不等式)

s%5E4-5s%5E2q%2B4q%5E2%2B6sp%5Cgeq%20%200 (四次Schur%0A不等式)

下面所有运用到的恒等式都可以在我的这篇文章中找到(定理四~定理九):

在ab+bc+ca=1条件下的一些恒等式


PART 2 实践

例一:非负实数a%E3%80%81b%E3%80%81c满足ab%2Bbc%2Bca%3D1%0A,求证:%5Cfrac%7B1%7D%7Ba%2Bb%7D%20%2B%5Cfrac%7B1%7D%7Bb%2Bc%7D%2B%5Cfrac%7B1%7D%7Bc%2Ba%7D%5Cgeq%20%5Cfrac%7B5%7D%7B2%7D%20

此题是在某代数不等式上看到的,米尔赫德不等式确实是“好方法”,我们还是使用换元来解决此题。

证明:原不等式%5Ciff%20%5Cfrac%7B%5Csum_%7Bcyc%7D%5E%7B%7D%20(a%2Bb)(b%2Bc)%7D%7B(a%2Bb)(b%2Bc)(c%2Ba)%7D%20%5Cgeq%20%5Cfrac%7B5%7D%7B2%7D%20

ab%2Bbc%2Bca%3D1%0A,知上式%5Ciff%20%5Cfrac%7B%5Csum_%7Bcyc%7D%5E%7B%7D%20(1%2Bb%5E2%20)%7D%7B(a%2Bb)(b%2Bc)(c%2Ba)%7D%20%5Cgeq%20%5Cfrac%7B5%7D%7B2%7D%20(定理四)

%5Ciff%20%5Cfrac%7B3%2B%5Csum_%7Bcyc%7D%5E%7B%7D%20a%5E2%20%7D%7B%5Csum_%7Bcyc%7D%5E%7B%7D%20a-abc%7D%20%5Cgeq%20%5Cfrac%7B5%7D%7B2%7D%20(定理六)

%5Csum_%7Bcyc%7D%5E%7B%7Da%3Ds%E3%80%811%3D%5Csum_%7Bcyc%7D%5E%7B%7Dab%3Dq%E3%80%81abc%3Dp%0A

%5Csum_%7Bcyc%7D%5E%7B%7D%20a%5E2%3D(%5Csum_%7Bcyc%7D%5E%7B%7D%20a)%5E2-2%5Csum_%7Bcyc%7D%5E%7B%7D%20ab%3Ds%5E2%20-2q%3Ds%5E2%20-2

于是,原命题%5Ciff%20%5Cfrac%7B3%2Bs%5E2-2%20%7D%7Bs-p%7D%20%5Cgeq%20%5Cfrac%7B5%7D%7B2%7D%20

%5Ciff%202s%5E2%20-5s%2B2%2B5p%5Cgeq%200%0A

可以观察到这个式子仅有s%E3%80%81p%0A两个变量,显然将p%0A通过放缩转化成s为最优的选择

我们选择为数不多p出现在大于的一边的不等式——三次Schur%0A不等式进行放缩

由三次Schur%0A不等式:s%5E3-4sq%2B9p%5Cgeq%200 ,变形可得:9p%5Cgeq%204sq-s%5E3%3D4s-s%5E3%0A

那么,我们可以得到:2s%5E2%20-5s%2B2%2B5p%5Cgeq2s%5E2%20-5s%2B2%2B%5Cfrac%7B5%7D%7B9%7D(4s-s%5E3)%3D-%5Cfrac%7B5%7D%7B9%7Ds%5E3%2B2s%5E2-%5Cfrac%7B25%20%7D%7B9%7Ds%2B2%20%20%0A

我们不妨画出此函数的图像:

注意s%0A是有取值范围的,由a%E3%80%81b%E3%80%81c%0A非负且q%3D1,知s%5Cgeq%20%5Csqrt%7B3q%7D%20%3D%5Csqrt%7B3%7D%20

那么,在s%5Cin%20%5B%5Csqrt%7B3%7D%20%2C2%5D时,-%5Cfrac%7B5%7D%7B9%7Ds%5E3%2B2s%5E2-%5Cfrac%7B25%20%7D%7B9%7Ds%2B2%20%20%5Cgeq%200是恒成立的,我们用导数的工具证明之:

f(s)%3D-%5Cfrac%7B5%7D%7B9%7Ds%5E3%2B2s%5E2-%5Cfrac%7B25%20%7D%7B9%7Ds%2B2%20%20%0A,则f'(s)%3D-%5Cfrac%7B5%7D%7B3%7Ds%5E2%2B4s-%5Cfrac%7B25%20%7D%7B9%7D%5C%0A

这是一个开口向下,%5CDelta%20%3D4%5E2-4%5Ctimes%20%5Cfrac%7B5%7D%7B3%7D%5Ctimes%20%20%5Cfrac%7B25%7D%7B9%7D%20%3D-%5Cfrac%7B68%7D%7B27%7D%20%EF%BC%9C0的二次函数,

故而f'(s)%EF%BC%9C0%0A恒成立,即f(s)R上单调递减,

s%5Cin%20%5B%5Csqrt%7B3%7D%20%2C2%5D时,2s%5E2%20-5s%2B2%2B5p%5Cgeq%20f(s)%5Cgeq%20f(2)%3D0%0A%0A,原不等式得到了证明。

但我们仍未证明s%5Cin%20(2%2C%2B%E2%88%9E)%0A时原不等式成立。

其实,这个范围内的原不等式更加容易证明,2s%5E2%20-5s%2B2%2B5p%5Cgeq0%5Ciff%205p%5Cgeq%20-2s%5E2%20%2B5s-2

g(s)%3D-2s%5E2%20%2B5s-2,则g'(s)%3D-4s%2B5

g(s)%0A时,g'(s)%EF%BC%9C0,从而g(s)%5Cleq%20g(2)%3D0

于是当s%5Cin%20(2%2C%2B%E2%88%9E)%0A时,5p%5Cgeq%200%EF%BC%9Eg(s)%3D-2s%5E2%20%2B5s-2

当且仅当(a%2Cb%2Cc)%3D(1%2C1%2C0)(1%2C0%2C1)(0%2C1%2C1)时,等号成立

综上,原不等式得证!


B站只允许插入100张图片,还有一道题只能放在下面一篇文章中了。

spq法的简单运用的评论 (共 条)

分享到微博请遵守国家法律