欢迎光临散文网 会员登陆 & 注册

对数(指数)平均不等式·证明过程

2023-04-01 02:37 作者:明月星尘ST  | 我要投稿

  对数平均不等式:对于两个正数a和b且a%5Cneq%20b,我们有%5Csqrt%7Bab%7D<e%5Em<%5Cfrac%7Ba%2Bb%7D%7B2%7D%20,下面我们来证明

我们先证%5Cfrac%7Ba%2Bb%7D%7B%5Cln%20a%20-%5Cln%20b%20%20%7D%20%3C%5Cfrac%7Ba%2Bb%7D%7B2%7D%20

因为a,b均大于0

我们不妨设b>a

此时要证%5Cfrac%7Ba%2Bb%7D%7B%5Cln%20a%20-%5Cln%20b%20%20%7D%20%3C%5Cfrac%7Ba%2Bb%7D%7B2%7D%20成立,即证%5Cfrac%7B%5Cfrac%7Ba%7D%7Bb%7D-1%20%7D%7B%5Cln%20%5Cfrac%7Ba%7D%7Bb%7D%20%20%7D%20%3C%5Cfrac%7B%5Cfrac%7Ba%7D%7Bb%7D%2B1%20%7D%7B2%7D%20成立

此时有0%3C%5Cfrac%7Ba%7D%7Bb%7D%20%3C1

那么上式可化为2(%5Cfrac%7Ba%7D%7Bb%7D%20-1)%3E%5Cln%20%5Cfrac%7Ba%7D%7Bb%7D%20%20(%5Cfrac%7Ba%7D%7Bb%7D%20%2B1)

%5Cimplies%202(%5Cfrac%7Ba%7D%7Bb%7D%20-1)-%5Cln%20%5Cfrac%7Ba%7D%7Bb%7D%20%20(%5Cfrac%7Ba%7D%7Bb%7D%20%2B1)%3E0

令x=%5Cfrac%7Ba%7D%7Bb%7D%20 (0<x<1)

则上式可化为2(x-1)-%5Cln%20x%20(x%2B1)%3E0

此时要证%5Cfrac%7Ba%2Bb%7D%7B%5Cln%20a%20-%5Cln%20b%20%20%7D%20%3C%5Cfrac%7Ba%2Bb%7D%7B2%7D%20成立,即证2(x-1)-%5Cln%20x%20(x%2B1)%3E0成立

g(x)%3D2(x-1)-%5Cln%20x%20(x%2B1)

g'(x)=1-%5Cln%20x%20-%5Cfrac1x

即g'(x)=%5Cfrac%7Bx-x%5Cln%20x%20-1%7D%7Bx%7D%20

令h(x)=-x-x%5Cln%20x%20-1

显然g'(x)与h(x)的增减区间相同

那么h'(x)=-%5Cln%20x%20

因为当x%5Cin%20(0%2C1)时,-%5Cln%20x%20%3E0

即有当x%5Cin%20(0%2C1)时,h'(x)%3E0

此时h(x)在(0,1)上单调递增

所以有h(x)<h(1)   (0<x<1)

所以有g'(x)<g'(1)  (o<x<1)

由g'(x)=1-%5Cln%20x%20-%5Cfrac1x,得g'(1)=0

所以有g'(x)<0   (0<x<1)

所以g(x)在(0,1)上单调递减

所以有g(x)>g(1)  (0<x<1)

因为由g(x)%3D2(x-1)-%5Cln%20x%20(x%2B1),知g(1)=0

所以g(x)>0 (0<x<1)

所以2(x-1)-%5Cln%20x%20(x%2B1)%3E0 (0<x<1)得证

所以%5Cfrac%7Ba%2Bb%7D%7B%5Cln%20a%20-%5Cln%20b%20%20%7D%20%3C%5Cfrac%7Ba%2Bb%7D%7B2%7D%20(a,b>0且a%5Cneq%20b)得证

接下来我们证%5Csqrt%7Bab%7D%20%3C%5Cfrac%7Ba-b%7D%7B%5Cln%20a%20-%5Cln%20b%20%7D%20

因为a,b均大于0

我们不妨设b>a

则原命题可化为%5Csqrt%7B%5Cfrac%7Ba%7D%7Bb%7D%20%7D%20%3C%5Cfrac%7B%5Cfrac%7Ba%7D%7Bb%7D-1%20%7D%7B%5Cln%20%5Cfrac%7Ba%7D%7Bb%7D%20%20%7D%20

%5Cimplies%20%5Cfrac%7Ba%7D%7Bb%7D%20-%5Csqrt%7B%5Cfrac%7Ba%7D%7Bb%7D%20%7D%20%5Cln%20%5Cfrac%7Ba%7D%7Bb%7D%20%20-1%3C0

令x=%5Csqrt%7B%5Cfrac%7Ba%7D%7Bb%7D%20%7D%20 (0<x<1)

则有x%5E2%20-x%5Cln%20x%5E2%20%20-1%3C0

此时要证原命题成立,即证上式成立即可

m(x)%3Dx%5E2%20-2x%5Cln%20x%20-1

m'(x)%3D2x-2%5Cln%20x%20-2

m''(x)%3D%5Cfrac%7B2(x-1)%7D%7Bx%7D%20

显然当x%5Cin%20(0%2C1)时,m''(x)<0

所以m'(x)在(0,1)上单调递减

所以此时m'(x)>m'(1),因为m'(1)=0

即有m'(x)>0

此时有m(x)在(0,1)上单调递增

此时m(x)<m(1)

因为m(1)=0

所以此时g(x)<0

x%5E2%20-x%5Cln%20x%5E2%20%20-1%3C0

所以%5Csqrt%7Bab%7D%20%3C%5Cfrac%7Ba-b%7D%7B%5Cln%20a%20-%5Cln%20b%20%7D%20(a,b大于0且a不等于b)得证

至此对数平均不等式的证明完毕,接下来我们来证明指数平均不等式

对于任意实数m,n(m%5Cneq%20n),有e%5E%5Cfrac%7Bm%2Bn%7D%7B2%7D%20%20%3C%5Cfrac%7Be%5Em%20-e%5En%20%7D%7Bm-n%7D%20%3C%5Cfrac%7B%20e%5Em%20%2Be%5En%20%7D%7B2%7D%20


其实此时由对数平均不等式%5Csqrt%7Bab%7D<%5Cfrac%7Ba-b%7D%7B%5Cln%20a%20-%20%5Cln%20b%20%7D%20<%5Cfrac%7Ba%2Bb%7D%7B2%7D%20(a,b>0且a%5Cneq%20b)中a取e%5Em%20,b取e%5En%20,即可得到指数平均不等式

感谢大家观看,如有错误还望指出

对数(指数)平均不等式·证明过程的评论 (共 条)

分享到微博请遵守国家法律