【种花家务·代数】1-5-10繁分式『数理化自学丛书6677版』
【阅前提示】本篇出自『数理化自学丛书6677版』,此版丛书是“数理化自学丛书编委会”于1963-1966年陆续出版,并于1977年正式再版的基础自学教材,本系列丛书共包含17本,层次大致相当于如今的初高中水平,其最大特点就是可用于“自学”。当然由于本书是大半个世纪前的教材,很多概念已经与如今迥异,因此不建议零基础学生直接拿来自学。不过这套丛书却很适合像我这样已接受过基础教育但却很不扎实的学酥重新自修以查漏补缺。另外,黑字是教材原文,彩字是我写的注解。
【山话嵓语】我在原有“自学丛书”系列17册的基础上又添加了1册八五人教中学甲种本《微积分初步》,原因有二:一则,我是双鱼座,有一定程度的偶双症,但“自学丛书”系列中代数4册、几何5册实在令我刺挠,因此就需要加入一本代数,使两边能够对偶平衡;二则,我认为《微积分初步》这本书对“准大学生”很重要,以我的惨痛教训为例,大一高数第一堂课,我是直接蒙圈,学了个寂寞。另外大学物理的前置条件是必须有基础微积分知识,因此我所读院校的大学物理课是推迟开课;而比较生猛的大学则是直接开课,然后在绪论课中猛灌基础高数(例如田光善舒幼生老师的力学课)。我选择在“自学丛书”17本的基础上添加这本《微积分初步》,就是希望小伙伴升大学前可以看看,不至于像我当年那样被高数打了个措手不及。
第五章分式
§5-10繁分式
【01】我们前面所学到的分式,分子和分母都是整式。有时,我们也会遇到另外一种形式的分式。例如等等。在这种分式里,分子或分母本身是一个分式,我们把这样的分式,叫做繁分式。
【02】繁分式实际上是分式除法的另一种写法,因此可利用分式除法的法则,把它化成普通分式(分子分母都是整式的分式)。这种变换的过程,叫做把繁分式化简。
例1.化简繁分式:
【解】
繁分式也可以应用分式的基本性质来化简,如
例2.化简: 。
【解1】应用分式除法化简:
【解2】应用分式的基本性质,把分子分母都乘以 x²-1,得
例3.化简: 。
【解】
【注意】必须区别,这两个式子不相等,不同之处是两条分数线的长短,较短的线是小括号,较长的线是大括号。
例4.化简: 。
【解】
例5.化简: 。
【解】
习题5-10
化简:
【答案】