最近,分离器的改造作为一种有效的策略已经开花结果,以实现无枝晶的锌金属阳极。然而,到目前为止,所探索的途径还不利于大规模生产,而且很少有人关注分离器调节的本质。在此,通过在商用玻璃纤维(GF)的一侧喷印MXene纳米片,设计了一个可扩展的Ti3C2Tx MXene装饰的Janus分离器。这样得到的MXene-GF分离器具有丰富的表面极性基团、良好的电解质润湿性和高离子传导性,这有利于均匀局部电流分布和促进锌的成核动力学。值得注意的是,MXene-GF显示出可调节的介电常数,其优化值为53.5,提供了一个定向电场,以加速Zn-离子通量并排斥阴离子。因此,使用MXene-GF可以在对称电池中实现无树枝状的锌阳极,在1 mA cm-2时可以稳定循环1180小时,在5 mA cm-2时可以稳定循环1200小时。更令人印象深刻的是,使用Janus MXene-GF隔膜组装的水系锌离子电池全电池在5.0 A g-1条件下循环1000次后,实现了良好的容量保持率(77.9%)。这种具有可扩展性和有效性的策略为高性能金属阳极提供了一个新的视角。
Figure 1. a) Schematic diagram depicting the preparation and function of MXene-GF separator. b) Digital photos of bare GF and MXene-GF. The inks used for printing with different concentrations are displayed as the insets. The marked number represents x mg mL−1 , x = 0, 1, 3, and 5. c) Schematic illustration of the polarized charge distribution within different separators. d) Digital photo of a MXene-GF sheet with a diameter of 11 cm.Figure 5. Electrochemical performances of AZIB full cells equipped with MXene-GF separators.
2. Advanced Functional Materials ( IF 18.808 ):氟功能化MXene QDs用于高开路电压的近循环效率CsPbI3太阳能电池
Figure 1. a) Preparation process of Ti3C2Fx QDs. b) XRD pattern of Ti3AlC2 bulk and Ti3C2Fx flake, Ti3C2Fx QDs. XPS spectra of c) Ti3C2Fx QDs, d) Ti 2p, and e) F 1s. f) SEM image of Ti3C2Fx flakes. g) TEM and h) HRTEM images of Ti3C2Fx QDs.Figure 2. a) Top-view SEM images, b) AFM images, and c) Contact angles of CsPbI3 films with different concentrations of Ti3C2Fx QDs treatment.Figure 6. a) Photographs of control and Ti3C2Fx QDs-treated CsPbI3 films aged in ambient air conditions (RH: ≈35%, T = 25 °C). b) XRD patterns of perovskite films without and with Ti3C2Fx QDs treatment at 35% RH for 0 and 120 h. c) Air stability of the CsPbI3 PSCs without and with Ti3C2Fx QDs treatment.
3.Advanced Science ( IF 16.806 ): 微流控3D打印的动态响应性支架用于皮瓣再生
Figure 1. Schematic illustration of the dynamically responsive scaffolds from microfluidic 3D printing for skin flap regeneration.Figure 3. Photothermal responsive performance of the MX-HF scaffolds.
Figure 5. The skin flap survival rates after treatment.
4.ACS Nano ( IF 15.881 ):用于增强和协同声动力肿瘤纳米治疗的二维 MXene 原位纳米声敏剂生成
Figure 1. Schematic illustration of 2D MXene-originated in situ nanosonosensitizer generation for augmented and synergistic sonodynamic tumor nanotherapy.Figure 2. Preparation and characterization of Ti3C2/CuO2@BSA nanosheets.Figure 6. Antitumor effect of Ti3C2/CuO2@BSA nanosheets in vivo.
5. Small ( IF 13.281 ):用ZnTCPP修饰的Ti3C2TX MXene具有捕集细菌的能力和增强的可见光光催化抗菌活性
Figure 1. SEM images of a) Ti3C2TX, b) ZnTCPP, and c,d) ZnTCPP/Ti3C2TX; e) TEM image and f) HR-TEM image of ZnTCPP/Ti3C2TX; g) EDS elemental maps of ZnTCPP/Ti3C2TX.Figure 4. a,b) UPS spectra of Ti3C2TX, ZnTCPP, and ZnTCPP/Ti3C2TX; c) Energy scheme before and after contact between ZnTCPP and Ti3C2TX; d) Mechanism for the enhanced yield of ROS upon visible light irradiation.Figure 9. a) Schematic illustration of the S. aureus wound infection model and therapy; b) Photographs of the infected wounds on days 0, 2, 6, and 14; c) Photographs of bacterial colonies derived from the homogenized tissues of the infected sites of mice on day 2; d) Wound healing rates on days 0, 2, 6, and 8; e) Antibacterial rates on day 2 (*p < 0.05, **p < 0.01, and ***p < 0.001).
6.Chemical Engineering Journal ( IF 13.273 ) : 具有高灵敏度的生物相容性和透气全纤维压阻传感器,用于人体生理运动监测
Fig. 1. (a) The fabrication process of Ti3C2Tx MXene solution (MXene phase). (b) Schematic illustration of the preparation process of the all-fiber-based piezoresistive pressure sensor. (c) Schematic of the breathability characteristics of the sensor.Fig. 2. (a) SEM image of Ti3C2Tx MXene nanosheets. (b) TEM image of the 2D MXene nanosheet. (c) AFM characterization of the MXene nanosheet. The inset demonstrates that the sheet thickness is about 1 nm. (d-f) SEM images of (d) the PVDF, (e) the Ag/PVDF, and (f) the MXene/PVDF nanofibers, respectively. Insets are the relevant high magnification SEM images of single nanofiber. (g) The relative elemental maps of C, Ti, O, and F elements in the MXene/PVDF nanofiber. (h) The light intensity of a light emitting diode varies with different applied pressures, demonstrating the visualization of resistance changes.Fig. 6. Performance of the all-fiber-based pressure sensing array. (a) Optical images and schematic illustration of the assembled E-skin with 4 × 4 pixels. (b-d) Photographs of different numbers of fingers touching the E-skin and (e-g) the relevant spatial pressure distribution according to the current variation.
7.Journal of Materials Chemistry A ( IF 12.732 ):芯壳结构中的MXene:研究进展和前景