视频 BV1wU4y1Y7UG 提到的定理 证明
cos²θ1sin²θ2
=(1-sin²θ1)sin²θ2
=cos²θ1(1-cos²θ2)
即
sin²θ2-sin²θ1sin²θ2
=cos²θ1-cos²θ1cos²θ2
即
sin²θ1+sin²θ2-sin²θ1sin²θ2
=sin²θ1+cos²θ1-cos²θ1cos²θ2
即
sin²θ1+sin²θ2-sin²θ1sin²θ2
=1-cos²θ1cos²θ2
即
(sin²θ1+sin²θ2-sin²θ1sin²θ2)
/(sin²θ1sin²θ2)
=(1-cos²θ1cos²θ2)
/(sin²θ1sin²θ2)
即
(sin²θ1+sin²θ2)/(sin²θ1sin²θ2)-1
=1/(sin²θ1sin²θ2)-1/(tan²θ1tan²θ2)
即
(sin²θ1+sin²θ2)/(sin²θ1sin²θ2)-1
-2/(tanθ1tanθ2)cosα-cos²θ)
=1/(sin²θ1sin²θ2)-1/(tan²θ1tan²θ2)
-2/(tanθ1tanθ2)cosα-cos²θ)
即
(sin²θ1+sin²θ2)/(sin²θ1sin²θ2)-1
-2/(tanθ1tanθ2)cosα-cos²θ
=1/(sin²θ1sin²θ2)
-(1/(tanθ1tanθ2)+cosα)²
即
(sin²θ1+sin²θ2)/(sin²θ1sin²θ2)-1
-2cosθ1cosθ2/(sinθ1sinθ2)cosα-cos²θ
=1/(sin²θ1sin²θ2)
-(1/(tanθ1tanθ2)+cosα)²
即
(sin²θ1+sin²θ2)/(sin²θ1sin²θ2)-1
-2√(cos²θ1cos²θ2/(sin²θ1sin²θ2))cosα-cos²θ
=1/(sin²θ1sin²θ2)
-(1/(tanθ1tanθ2)+cosα)²
即
(sin²θ1+sin²θ2)/(sin²θ1sin²θ2)-1
-2√((1-sin²θ1)(1-sin²θ2)/(sin²θ1sin²θ2))cosα-cos²θ
=1/(sin²θ1sin²θ2)
-(1/(tanθ1tanθ2)+cosα)²
即
1/sin²θ1+1/sin²θ2-2
-2√((1/sin²θ1-1)(1/sin²θ2-1))cosα+sin²α
=1/(sin²θ1sin²θ2)
-(1/(tanθ1tanθ2)+cosα)²
即
a²/sin²α
(1/sin²θ1+1/sin²θ2-2
-2√((1/sin²θ1-1)(1/sin²θ2-1))cosα+sin²α)
=a²/sin²α
(1/(sin²θ1sin²θ2)
-(1/(tanθ1tanθ2)+cosα)²)
即
(a²/sin²θ1+a²/sin²θ2-2a²
-2√((a²/sin²θ1-a²)(a²/sin²θ2-a²))cosα)/sin²α+a²
=a²/sin²α
(1/(sin²θ1sin²θ2)
-(1/(tanθ1tanθ2)+cosα)²)
即
R²
=((2a/(2sinθ1))²-a²+(2a/(2sinθ2))²-a²
-2√(((2a/(2sinθ1))²-a²)(2a/(2sinθ2))²-a²))cosα)/sin²α+a²
=a²/sin²α
(1/(sin²θ1sin²θ2)
-(1/(tanθ1tanθ2)+cosα)²)
即
R
=a/sinα
√(1/(sinθ1sinθ2)²
-(1/(tanθ1tanθ2)+cosα)²)
得证