欢迎光临散文网 会员登陆 & 注册

视频 BV1wU4y1Y7UG 提到的定理 证明

2021-07-18 12:01 作者:Mynasty  | 我要投稿

BV1wU4y1Y7UG


cos²θ1sin²θ2

=(1-sin²θ1)sin²θ2

=cos²θ1(1-cos²θ2)

sin²θ2-sin²θ1sin²θ2

=cos²θ1-cos²θ1cos²θ2

sin²θ1+sin²θ2-sin²θ1sin²θ2

=sin²θ1+cos²θ1-cos²θ1cos²θ2

sin²θ1+sin²θ2-sin²θ1sin²θ2

=1-cos²θ1cos²θ2

(sin²θ1+sin²θ2-sin²θ1sin²θ2)

/(sin²θ1sin²θ2)

=(1-cos²θ1cos²θ2)

/(sin²θ1sin²θ2)

(sin²θ1+sin²θ2)/(sin²θ1sin²θ2)-1

=1/(sin²θ1sin²θ2)-1/(tan²θ1tan²θ2)

(sin²θ1+sin²θ2)/(sin²θ1sin²θ2)-1

-2/(tanθ1tanθ2)cosα-cos²θ)

=1/(sin²θ1sin²θ2)-1/(tan²θ1tan²θ2)

-2/(tanθ1tanθ2)cosα-cos²θ)

(sin²θ1+sin²θ2)/(sin²θ1sin²θ2)-1

-2/(tanθ1tanθ2)cosα-cos²θ

=1/(sin²θ1sin²θ2)

-(1/(tanθ1tanθ2)+cosα)²

(sin²θ1+sin²θ2)/(sin²θ1sin²θ2)-1

-2cosθ1cosθ2/(sinθ1sinθ2)cosα-cos²θ

=1/(sin²θ1sin²θ2)

-(1/(tanθ1tanθ2)+cosα)²

(sin²θ1+sin²θ2)/(sin²θ1sin²θ2)-1

-2√(cos²θ1cos²θ2/(sin²θ1sin²θ2))cosα-cos²θ

=1/(sin²θ1sin²θ2)

-(1/(tanθ1tanθ2)+cosα)²

(sin²θ1+sin²θ2)/(sin²θ1sin²θ2)-1

-2√((1-sin²θ1)(1-sin²θ2)/(sin²θ1sin²θ2))cosα-cos²θ

=1/(sin²θ1sin²θ2)

-(1/(tanθ1tanθ2)+cosα)²

1/sin²θ1+1/sin²θ2-2

-2√((1/sin²θ1-1)(1/sin²θ2-1))cosα+sin²α

=1/(sin²θ1sin²θ2)

-(1/(tanθ1tanθ2)+cosα)²

a²/sin²α

(1/sin²θ1+1/sin²θ2-2

-2√((1/sin²θ1-1)(1/sin²θ2-1))cosα+sin²α)

=a²/sin²α

(1/(sin²θ1sin²θ2)

-(1/(tanθ1tanθ2)+cosα)²)

(a²/sin²θ1+a²/sin²θ2-2a²

-2√((a²/sin²θ1-a²)(a²/sin²θ2-a²))cosα)/sin²α+a²

=a²/sin²α

(1/(sin²θ1sin²θ2)

-(1/(tanθ1tanθ2)+cosα)²)

=((2a/(2sinθ1))²-a²+(2a/(2sinθ2))²-a²

-2√(((2a/(2sinθ1))²-a²)(2a/(2sinθ2))²-a²))cosα)/sin²α+a²

=a²/sin²α

(1/(sin²θ1sin²θ2)

-(1/(tanθ1tanθ2)+cosα)²)

R

=a/sinα

√(1/(sinθ1sinθ2)²

-(1/(tanθ1tanθ2)+cosα)²)

得证


视频 BV1wU4y1Y7UG 提到的定理 证明的评论 (共 条)

分享到微博请遵守国家法律