拓端tecdat|R语言逻辑回归、随机森林、SVM支持向量机预测Framingham心脏病风险和模型
原文链接:http://tecdat.cn/?p=24973
原文出处:拓端数据部落公众号
简介
世界卫生组织估计全世界每年有 1200 万人死于心脏病。在美国和其他发达国家,一半的死亡是由于心血管疾病。心血管疾病的早期预后可以帮助决定改变高危患者的生活方式,从而减少并发症。本研究旨在查明心脏病最相关/风险因素,并使用机器学习预测总体风险。
数据准备
来源
该数据集来自对居民正在进行的心血管研究。分类目标是预测患者未来是否有 10 年患冠心病 (CHD) 的风险。数据集提供了患者的信息。它包括超过 4,000 条记录和 15 个属性。
变量
每个属性都是一个潜在的风险因素。有人口、行为和医疗风险因素。
人口统计:
• 性别:男性或女性(标量)
• 年龄:患者年龄;(连续 - 尽管记录的年龄已被截断为整数,但年龄的概念是连续的)
行为
• 当前吸烟者:患者是否是当前吸烟者(标量)
• 每天吸烟数:此人一天内平均吸烟的香烟数量。(可以认为是连续的,因为一个人可以拥有任意数量的香烟,甚至半支香烟。)
• BP Meds:患者是否服用降压药(标量)
•中风:患者之前是否有中风(标量)
• Hyp:患者是否患有高血压(标量)
• 糖尿病:患者是否患有糖尿病(标量)
• Tot Chol:总胆固醇水平(连续)
• Sys BP:收缩压(连续)
• Dia BP:舒张压(连续)
• BMI:体重指数(连续)
• 心率:心率(连续 - 在医学研究中,心率等变量虽然实际上是离散的,但由于存在大量可能值而被认为是连续的。)
• 葡萄糖:葡萄糖水平(连续)
预测变量(预期目标)
• 10 年患冠心病 CHD 的风险(二进制:“1”表示“是”,“0”表示“否”)
心脏病预测
数据预处理
查看和处理缺失值
由上图可以看出,除了glucose变量,其它变量的缺失比例都低于5%,而glucose变量缺失率超过了10%。对此的处理策略是保留glucose变量的缺失值,直接删除其它变量的缺失值。 现在处理glucose的缺失值,
填充,排除不重要的变量。至于为什么不选diaBP,主要是后面的相关性分析中,这两个变量会造成多重共线性。
删除重复行
查看离群点
totChol: 总胆固醇水平大于240mg/dl已属于非常高,故删去水平值为600mg/dl的记录。 sysBP: 去掉收缩压为295mg/dl的记录
由图像知,glucose和hearRate变量有不显着的风险
diaBP和sysBP有多重共线性的问题。
currentsmoker变量可能不显着,下面进入模型部分。
模型
逻辑回归
随机森林
这里有患病风险的误差不降反升,需要探究其中原因
SVM支持向量机
模型诊断
根据上面三个模型的结果,可以看出预测结果的类别数量分布非常不均衡
针对这一现象,需要采取方法平衡数据集。
最受欢迎的见解
1.R语言多元Logistic逻辑回归 应用案例
2.面板平滑转移回归(PSTR)分析案例实现
3.matlab中的偏最小二乘回归(PLSR)和主成分回归(PCR)
4.R语言泊松Poisson回归模型分析案例
5.R语言混合效应逻辑回归Logistic模型分析肺癌
6.r语言中对LASSO回归,Ridge岭回归和Elastic Net模型实现
7.R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病
8.python用线性回归预测股票价格
9.R语言用逻辑回归、决策树和随机森林对信贷数据集进行分类预测