欢迎光临散文网 会员登陆 & 注册

[Number Theory] Pythagorean Triples

2021-11-19 09:48 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng(郑涛)

【Problem】

A Pythagorean triple is a set of three positive integers (a%2Cb%2Cc) that satisfies the Pythagorean theorem a%5E2%20%2B%20b%5E2%20%3D%20c%5E2. The earliest table of Pythagorean triples can be found on an ancient Babylonian clay tablet called ''Plimpton 322'' (c. 1800 BC). However, the clay tablet does not indicate any knowledge of the Pythagoean triples formula.

Plimpton 322

Derive the formula for generating primitive Pythagorean triples

(a%2Cb%2Cc)%20%3D%20(2mn%2C%20m%5E2-n%5E2%2C%20m%5E2%2Bn%5E2)

where %5Cgcd(m%2C%20n)%3D1 and %5Cgcd(a%2Cb%2Cc)%3D1.

【Solution】

The Pythagorean theorem states that for a right triangle with sides a%2Cb%2Cc%20, where c is the longest side, a%5E2%20%2B%20b%5E2%20%3D%20c%5E2.

Subtract b%5E2 on both sides and factorize:

a%5E2%20%3D%20c%5E2%20-%20b%5E2

a%5E2%20%3D%20(c%2Bb)(c-b)

Then divide a%5E2 on both sides:

1%20%3D%20%5Cleft(%5Cfrac%7Bc%2Bb%7D%7Ba%7D%5Cright)%5Cleft(%5Cfrac%7Bc-b%7D%7Ba%7D%5Cright)


If %5Cfrac%7Bc-b%7D%7Ba%7D%20 is a rational number, then %20%5Cfrac%7Bc-b%7D%7Ba%7D%20%3D%20%5Cfrac%7Bn%7D%7Bm%7D and %5Cfrac%7Bc%2Bb%7D%7Ba%7D%20%3D%20%5Cfrac%7Bm%7D%7Bn%7D, where %5Cgcd(m%2Cn)%20%3D%201.

Subsequently, %5Cfrac%7Bc%7D%7Ba%7D%20-%20%5Cfrac%7Bb%7D%7Ba%7D%20%3D%20%5Cfrac%7Bn%7D%7Bm%7D and %5Cfrac%7Bc%7D%7Ba%7D%20%2B%20%5Cfrac%7Bb%7D%7Ba%7D%20%3D%20%5Cfrac%7Bm%7D%7Bn%7D.

(1) By adding the two expressions, it can be shown that

2%5Cleft(%5Cfrac%7Bc%7D%7Ba%7D%5Cright)%20%20%3D%20%5Cfrac%7Bm%5E2%20%2B%20n%5E2%7D%7Bmn%7D

%5Cfrac%7Bc%7D%7Ba%7D%20%20%3D%20%5Cfrac%7Bm%5E2%20%2B%20n%5E2%7D%7B2mn%7D

For primitive Pythagorean triples, %5Cgcd(a%2Cc)%20%3D%201; therefore, %20a%20%3D%202mn and c%20%3D%20m%5E2%20%2B%20n%5E2%20.

(2) By subtracting the two expressions, it can be shown that

2%5Cleft(%5Cfrac%7Bb%7D%7Ba%7D%5Cright)%20%20%3D%20%5Cfrac%7Bm%5E2%20-%20n%5E2%7D%7Bmn%7D

%5Cfrac%7Bb%7D%7Ba%7D%20%20%3D%20%5Cfrac%7Bm%5E2%20-%20n%5E2%7D%7B2mn%7D

For primitive Pythagorean triples, %20%5Cgcd(a%2Cb)%20%3D%201; therefore, a%20%3D%202mn and b%20%3D%20m%5E2%20-%20n%5E2.

Therefore, the primitive Pythagorean triples formula is

(a%2Cb%2Cc)%20%3D%20(2mn%2C%20m%5E2-n%5E2%2C%20m%5E2%2Bn%5E2)%20


To generate all Pythagorean triples, one can scale each side by a common factor k that is a positive integer.

(a%2Cb%2Cc)%20%3D%20%5Cleft(2kmn%2C%20k(m%5E2-n%5E2)%2C%20k(m%5E2%2Bn%5E2)%5Cright)



[Number Theory] Pythagorean Triples的评论 (共 条)

分享到微博请遵守国家法律