就 广东中考 压轴 题23.(3) 个人解法 飨以诸君

有
ΔAEN∽ΔOCN
设
正方形边长a
OA与x轴正轴成角θ
有
相似比
a·tan(45°-θ)
/
a
=
1-tanθ
/
1+tanθ
即
n
/
√2a-n
=
1-tanθ
/
1+tanθ
即
√2a
/
√2a-n
=
2
/
1+tanθ
即
√2a-2n
=
√2a·tanθ
即
tanθ
=
1-√2n/a
且
A(cosθ·a,sinθ·a)
C(-sinθ·a,cosθ·a)
设
N点横坐标xN
有
cosθ·a-xN
/
xN+sinθ·a
=
1-tanθ
/
1+tanθ
即
cosθ·a+sinθ·a
/
xN+sinθ·a
=
2
/
1+tanθ
即
xN=(1+tanθ)(cosθ+sinθ)a/2-sinθ·a
即
S
=
1/2
a/cosθ
(1+tanθ)(cosθ+sinθ)a/2-sinθ·a-sinθ·a
=
1/2
a/cosθ
((1+2sinθcosθ)a
/
2cosθ
-
2sinθ·a)
=
1/2
a/cosθ
((sinθ-cosθ)²·a
/
2cosθ)
=
(sinθ-cosθ)²·a²
/
4cos²θ
=
(tanθ-1)²·a²
/
4
=
(1-√2n/a-1)²·a²
/
4
=
n²/2