欢迎光临散文网 会员登陆 & 注册

偏微分方程?

2023-06-23 10:24 作者:编程会一点建模不太懂  | 我要投稿

题目选自2022年考研数学二

已知可微函数f(u%2Cv)满足:

%5Cfrac%7B%5Cpartial%20f%5Cleft(%20u%2Cv%20%5Cright)%7D%7B%5Cpartial%20u%7D-%5Cfrac%7B%5Cpartial%20f%5Cleft(%20u%2Cv%20%5Cright)%7D%7B%5Cpartial%20v%7D%3D2%5Cleft(%20u-v%20%5Cright)%20e%5E%7B-%5Cleft(%20u%2Bv%20%5Cright)%7D

f%5Cleft(%20u%2C0%20%5Cright)%20%3Du%5E2e%5E%7B-u%7D

(1)记g(x%2Cy)%3Df(x%2Cy-x),求%5Cfrac%7B%5Cpartial%20g%5Cleft(%20x%2Cy%20%5Cright)%7D%7B%5Cpartial%20x%7D

(2)求函数f(u%2Cv)表达式和极值

解:(1)令u%3Dx%2Cv%3Dy-x

%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%3D1%2C%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D%3D-1

所以

%5Cfrac%7B%5Cpartial%20g%5Cleft(%20x%2Cy%20%5Cright)%7D%7B%5Cpartial%20x%7D%3D%5Cfrac%7B%5Cpartial%20f%5Cleft(%20x%2Cy-x%20%5Cright)%7D%7B%5Cpartial%20x%7D

%3D%5Cfrac%7B%5Cpartial%20f%5Cleft(%20u%2Cv%20%5Cright)%7D%7B%5Cpartial%20u%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%2B%5Cfrac%7B%5Cpartial%20f%5Cleft(%20u%2Cv%20%5Cright)%7D%7B%5Cpartial%20v%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D%0A

%3D%5Cfrac%7B%5Cpartial%20f%5Cleft(%20u%2Cv%20%5Cright)%7D%7B%5Cpartial%20u%7D-%5Cfrac%7B%5Cpartial%20f%5Cleft(%20u%2Cv%20%5Cright)%7D%7B%5Cpartial%20v%7D%0A

%3D2%5Cleft(%20u-v%20%5Cright)%20e%5E%7B-%5Cleft(%20u%2Bv%20%5Cright)%7D%0A

%3D2%5Cleft(%202x-y%20%5Cright)%20e%5E%7B-y%7D%0A

(2)因为

%5Cfrac%7B%5Cpartial%20g%5Cleft(%20x%2Cy%20%5Cright)%7D%7B%5Cpartial%20x%7D%3D2%5Cleft(%202x-y%20%5Cright)%20e%5E%7B-y%7D

x积分得到

g%5Cleft(%20x%2Cy%20%5Cright)%20%3D2%5Cleft(%20x%5E2-xy%20%5Cright)%20e%5E%7B-y%7D%2Bh%5Cleft(%20y%20%5Cright)%20

因为g(x%2Cy)%3Df(x%2Cy-x)

%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09u%3Dx%5C%5C%0A%09v%3Dy-x%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20%5CRightarrow%20%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09x%3Du%5C%5C%0A%09y%3Du%2Bv%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20%5CRightarrow%20f%5Cleft(%20u%2Cv%20%5Cright)%20%3D-2uve%5E%7B-%5Cleft(%20u%2Bv%20%5Cright)%7D%2Bh%5Cleft(%20u%2Bv%20%5Cright)%20

f%5Cleft(%20u%2C0%20%5Cright)%20%3Dh%5Cleft(%20u%20%5Cright)%20%3Du%5E2e%5E%7B-u%7D%0A

所以

f%5Cleft(%20u%2Cv%20%5Cright)%20%3D%5Cleft(%20u%2Bv%20%5Cright)%20%5E2e%5E%7B-%5Cleft(%20u%2Bv%20%5Cright)%7D-2uve%5E%7B-%5Cleft(%20u%2Bv%20%5Cright)%7D%3D%5Cleft(%20u%5E2%2Bv%5E2%20%5Cright)%20e%5E%7B-%5Cleft(%20u%2Bv%20%5Cright)%7D

%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D%3De%5E%7B-%5Cleft(%20u%2Bv%20%5Cright)%7D%5Cleft(%202u-u%5E2-v%5E2%20%5Cright)%5C%5C%0A%09%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20v%7D%3De%5E%7B-%5Cleft(%20u%2Bv%20%5Cright)%7D%5Cleft(%202v-v%5E2-u%5E2%20%5Cright)%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20

%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D%3D0%5C%5C%0A%09%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20v%7D%3D0%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20%5CRightarrow%20%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09u%3D0%5C%5C%0A%09v%3D0%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20%5Ctext%7B%E6%88%96%7D%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09u%3D1%5C%5C%0A%09v%3D1%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20

%5Cleft(%20u%2Cv%20%5Cright)%20%3D%5Cleft(%200%2C0%20%5Cright)

A%3D%5Cfrac%7B%5Cpartial%20%5E2f%7D%7B%5Cpartial%20u%5E2%7D%3D%5Cunderset%7Bu%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D%5Cmid_%7B%5Cleft(%20u%2C0%20%5Cright)%7D%5E%7B%7D-%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D%5Cmid_%7B%5Cleft(%200%2C0%20%5Cright)%7D%5E%7B%7D%7D%7Bu%7D

%3D%5Cunderset%7Bu%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7Be%5E%7B-u%7D%5Cleft(%202u-u%5E2%20%5Cright)%7D%7Bu%7D%3D2%0A

B%3D%5Cfrac%7B%5Cpartial%20%5E2f%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%3D%5Cunderset%7Bv%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D%5Cmid_%7B%5Cleft(%200%2Cv%20%5Cright)%7D%5E%7B%7D-%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D%5Cmid_%7B%5Cleft(%200%2C0%20%5Cright)%7D%5E%7B%7D%7D%7Bv%7D

%3D%5Cunderset%7Bv%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B-e%5E%7B-v%7Dv%5E2%7D%7Bv%7D%3D0%0A

C%3D%5Cfrac%7B%5Cpartial%20%5E2f%7D%7B%5Cpartial%20v%5E2%7D%3D%5Cunderset%7Bv%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20v%7D%5Cmid_%7B%5Cleft(%200%2Cv%20%5Cright)%7D%5E%7B%7D-%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20v%7D%5Cmid_%7B%5Cleft(%200%2C0%20%5Cright)%7D%5E%7B%7D%7D%7Bv%7D

%3D%5Cunderset%7Bv%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7Be%5E%7B-v%7D%5Cleft(%202v-v%5E2%20%5Cright)%7D%7Bv%7D%3D2%0A

A%3D2%3E0%2CAC-B%5E2%3D4%3E0

所以(0%2C0)为极小值点

%5Cleft(%20u%2Cv%20%5Cright)%20%3D%5Cleft(%201%2C1%20%5Cright)

A%3D%5Cfrac%7B%5Cpartial%20%5E2f%7D%7B%5Cpartial%20u%5E2%7D%3D%5Cunderset%7B%5CvarDelta%20u%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D%5Cmid_%7B%5Cleft(%201%2B%5CvarDelta%20u%2C1%20%5Cright)%7D%5E%7B%7D-%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D%5Cmid_%7B%5Cleft(%201%2C1%20%5Cright)%7D%5E%7B%7D%7D%7B%5CvarDelta%20u%7D%0A

%3D%5Cunderset%7B%5CvarDelta%20u%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7Be%5E%7B-%5Cleft(%202%2B%5CvarDelta%20u%20%5Cright)%7D%5Cleft(%202%5Cleft(%201%2B%5CvarDelta%20u%20%5Cright)%20-%5Cleft(%201%2B%5CvarDelta%20u%20%5Cright)%20%5E2-1%20%5Cright)%7D%7B%5CvarDelta%20u%7D%0A

%3De%5E%7B-2%7D%5Cunderset%7B%5CvarDelta%20u%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B-%5Cleft(%20%5CvarDelta%20u%20%5Cright)%20%5E2%7D%7B%5CvarDelta%20u%7D%3D0%0A

B%3D%5Cfrac%7B%5Cpartial%20%5E2f%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%3D%5Cunderset%7B%5CvarDelta%20v%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D%5Cmid_%7B%5Cleft(%201%2C1%2B%5CvarDelta%20v%20%5Cright)%7D%5E%7B%7D-%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D%5Cmid_%7B%5Cleft(%201%2C1%20%5Cright)%7D%5E%7B%7D%7D%7B%5CvarDelta%20v%7D%0A

%3D%5Cunderset%7B%5CvarDelta%20v%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7Be%5E%7B-%5Cleft(%202%2B%5CvarDelta%20v%20%5Cright)%7D%5Cleft(%202-1-%5Cleft(%201%2B%5CvarDelta%20v%20%5Cright)%20%5E2%20%5Cright)%7D%7B%5CvarDelta%20v%7D%0A

%3De%5E%7B-2%7D%5Cunderset%7B%5CvarDelta%20v%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B-2%5CvarDelta%20v-%5Cleft(%20%5CvarDelta%20v%20%5Cright)%20%5E2%7D%7B%5CvarDelta%20v%7D%3D-2e%5E%7B-2%7D%0A

C%3D%5Cfrac%7B%5Cpartial%20%5E2f%7D%7B%5Cpartial%20v%5E2%7D%3D%5Cunderset%7B%5CvarDelta%20v%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20v%7D%5Cmid_%7B%5Cleft(%201%2C1%2B%5CvarDelta%20v%20%5Cright)%7D%5E%7B%7D-%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20v%7D%5Cmid_%7B%5Cleft(%201%2C1%20%5Cright)%7D%5E%7B%7D%7D%7B%5CvarDelta%20v%7D%0A

%3D%5Cunderset%7B%5CvarDelta%20v%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7Be%5E%7B-%5Cleft(%202%2B%5CvarDelta%20v%20%5Cright)%7D%5Cleft(%202%5Cleft(%201%2B%5CvarDelta%20v%20%5Cright)%20-%5Cleft(%201%2B%5CvarDelta%20v%20%5Cright)%20%5E2-1%20%5Cright)%7D%7B%5CvarDelta%20v%7D%0A

%3De%5E%7B-2%7D%5Cunderset%7B%5CvarDelta%20u%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B-%5Cleft(%20%5CvarDelta%20v%20%5Cright)%20%5E2%7D%7B%5CvarDelta%20v%7D%3D0%0A

AC-B%5E2%3D-4e%5E%7B-4%7D%3C0

所以(1%2C1)不是极值点

所以f(u%2Cv)的极小值为f(0%2C0)%3D0

本题选自2022年考研数学二,实际上该题为偏微分方程的定解问题,偏微分方程并不属于考研数学的大纲要求内容,但是正如所见,命题人在第一小问给出函数g(x%2Cy)的提示,将偏微分方程转化为带关于x带参数y的不定积分的形式,使题目求解成为可能。

这个题目告诉我们,考研数学可能考察一些超纲的知识,包括2022年考研数学二中瑞利商和2022年考研数学一中条件期望问题等,但是会给予一定的提示。

当然我们在平时练习的时候,在学有余力的情况下,也可以通过题目去适当了解一些,比如本题中考察到的偏微分方程,实际上,在数学系或者一些数理要求较高的专业所开设的偏微分方程课程中,常见的一种处理方法有分离变量法,这种方法就是将二元函数分解成两个函数乘积的形式,即f(x%2Cy)%3Dg(x)h(y),这样带入偏微分方程即可分解成两个常微分方程的形式,进行求解。

回到本题中,抛开偏微分方程这个超纲的内容,从大纲角度看,本题是一道极具综合性的题目,从第一小问的偏微分变换,到带关于x带参数y的不定积分求解,最终确定二元函数并求解极值,总体上,考察了3-4个知识点。

在二元函数极值求解及判断的计算过程中,不建议直接求二阶偏导数,因为对于待定的极值点,其一阶偏导数必为0,所以在求对应点的二阶偏导数时,可以通过导数定义的方法求解,这样计算量会减小,虽然,我前面所写的用定义求二阶偏导数过程好像内容比较多,但是实际上比直接带参数x,y直接求更不容易出错。

偏微分方程?的评论 (共 条)

分享到微博请遵守国家法律