【菲赫金哥尔茨微积分学教程精读笔记Ep104】函数不定式(四)
今天结束这部分例题:
e.x趋近于0时,lim (1-cos x)/x^2=1/2

(1-cos x)/x^2=2(sin x/2)^2/4(x/2)^2=[(sin x/2)/(x/2)]^2/2;
x趋近于0时,lim sin x/x=1,则lim(1-cos x)/x^2=1/2
f.x趋近于0时,lim (tan x-sin x)/x^2=1/2


=(sin x/cos x-sin x)/x^3
=sinx(1-cos x)/(x^3cos x)
={(sinx/x)[(1-cos x)/x^2]}/cos x;
x趋近于0时,lim sin x/x=1,lim(1-cos x)/x^2=1/2,lim 1/cos x=1,
则lim(tan x-sin x)/x^3=1/2.
g.x趋近于π/2时,lim(sec x-tan x)=0

x趋近于π/2时,π/2-x趋近于0,于是
sec x-tan x
=1/cos x-sin x/cos x
=(1-sin x)/cos x
=[1-cos(π/2-x)]/sin(π/2-x)
={[1-cos(π/2-x)]/(π/2-x)^2}[(π/2-x)/sin(π/2-x)](π/2-x);
x趋近于π/2时,lim[1-cos(π/2-x)]/(π/2-x)^2=1/2,lim(π/2-x)/sin(π/2-x)=1,
lim(π/2-x)=0,则lim(sec x-tan x)=0.
到这里!