卡尔曼滤波Kalman Filtering:介绍
控制理论(control theory)是工程学的分支之一,主要应对工程系统控制的问题。比如控制汽车发动机的功率输出,稳定电动机的转速,控制“反应速率”(或化学过程的速度),通过所谓的控制变量(control variables)去控制系统。在控制汽车发动机的功率输出的例子中,控制变量可以是输入发动机的汽油量。
典型的控制系统的方法包括了规定数学模型来描述动态系统。这种模型通常用几个不同的式子表示。通过操纵模型中的变量实现控制。但是,现实中系统会有一些意想不到的波动、变化是无法使用一种确定的方法去建模。因而卡尔曼滤波被R.E.Kalman提出去解决这个问题。
卡尔曼滤波来自文章“A New Approach to Linear Filtering and Prediction Problems"。而Kalman的文章其中一个贡献就是提出系统状态(system state)的概念,或者说系统当前的状态。系统的状态表示为由不同的系统参数当前值组成的向量。向量本身是从系统上的一组观测值推导出来的,这些测量值又被转换成系统状态项(system-state terms)。这种转换通常被建模为线性方程。因此,进行观测的方法和将观测值转化为系统状态的方程式充分体现了系统状态的概念。
有了系统状态的概念后,看看使用系统状态去描述动态系统(dynamical system)。在卡尔曼滤波方法中,使用一系列的系统状态转移(即从一个系统状态转移到另一个系统状态)来对动态系统建模。这些转移(transistion)也被建模为线性方程。
接下来,为了有效地监控系统(出于控制的目的),对我们当前所处的状态以及我们预计在下一时间步骤中过渡到的状态进行评估是有必要的。换句话说,我们需要不断预测下一个系统状态并进行测量以验证预测得好不好。卡尔曼滤波器提供了一个方法来协调预测状态,然后进行测量这两个步骤得到的值,从而获得系统状态的最佳估计序列。这个方法把系统看作一系列的状态转移在当时是很颠覆的,开创了控制领域的一个新时代称为现代控制理论。
应用到风险套利的情形,我们可以用卡尔曼滤波方法来过滤观测到的spread价差中的噪声。
卡尔曼滤波方法还可以用来平滑一个随机游走。现在很多技术分析人员用所谓的移动平均(moving average)去平滑或者说过滤价格时间序列。这种使用移动平均的方法可以看作是在过滤了噪声之后尝试对股价时序进行估计。人们对移动平均线的普遍不满一直是,当价格走势发生剧烈而突然的变化时,移动平均线往往会滞后。而卡尔曼滤波帮助我们构造更好的平滑器(更好的平滑方法)。