欢迎光临散文网 会员登陆 & 注册

Practice_1_a difficult limit exercise

2022-04-11 18:29 作者:Baobhan_Sith  | 我要投稿


Where I_%5Cnu(x) is modified bessel function of the first kind

%5Cmathrm%7BL%7D_%5Cnu(x) is modified struve function

Before tackle this limit, I mention a lemma which would be used in procedure.

Lemma:

%5Csum_%7Bm%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20mz%20%5Cright)%7D%7Bm%5E%7B%5Cnu%7D%7D%5Cfrac%7B1%7D%7Bm%5E2%2Ba%5E2%7D%7D%3D%5Cfrac%7B%5Cpi%7D%7B2a%5E%7B1%2B%5Cnu%7D%5Ctanh%20%5Cpi%20a%7DI_%7B%5Cnu%7D%5Cleft(%20az%20%5Cright)%20-%5Cfrac%7Bz%5E%7B%5Cnu%7D%7D%7B2%5E%7B1%2B%5Cnu%7Da%5E2%5CGamma%20%5Cleft(%20%5Cnu%20%2B1%20%5Cright)%7D-%5Cfrac%7B%5Cpi%7D%7B2a%5E%7B1%2B%5Cnu%7D%7D%5Cmathrm%7BL%7D_%7B%5Cnu%7D%5Cleft(%20az%20%5Cright)%20%0A

above formula holds when a%3C1%2Cz%3C%5Cpi%20%2C%5Cnu%20%3E-%5Cfrac%7B5%7D%7B2%7D

But according to the theorem of analytic continuation, the limitation a%3C1 can be deleted.

Proof of Lemma:

Denote S%3D%5Csum_%7Bm%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20mz%20%5Cright)%7D%7Bm%5E%7B%5Cnu%7D%7D%5Cfrac%7B1%7D%7Bm%5E2%2Ba%5E2%7D%7D%0A

Expand  %5Cfrac%7B1%7D%7Bm%5E2%2Ba%5E2%7D%0A to series and exchange the order of the double summation

S%3D%5Csum_%7Bm%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20mz%20%5Cright)%7D%7Bm%5E%7B%5Cnu%7D%7D%5Cfrac%7B1%7D%7Bm%5E2%2Ba%5E2%7D%7D%0A

%3D%5Csum_%7Bm%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20mz%20%5Cright)%7D%7Bm%5E%7B%5Cnu%20%2B2%7D%7D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20-1%20%5Cright)%20%5En%5Cfrac%7Ba%5E%7B2n%7D%7D%7Bm%5E%7B2n%7D%7D%7D%7D%0A

%0A%3D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20-1%20%5Cright)%20%5Ena%5E%7B2n%7D%5Csum_%7Bm%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20mz%20%5Cright)%7D%7Bm%5E%7B%5Cnu%20%2B2%2B2n%7D%7D%7D%7D

The sum of the nested series had been evaluated earlier

(its proof won't be posted here because of its cumbersome process, but I will prove it in my next article)

Its value is given by

 %5Csum_%7Bm%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20mz%20%5Cright)%7D%7Bm%5E%7B%5Cnu%20%2B2n%2B2%7D%7D%7D

%3D%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5En%7D%7B2%7D%5Csum_%7Bm%3D0%7D%5E%7Bn%2B1%7D%7B%5Cfrac%7B%5Cleft(%202%5Cpi%20%5Cright)%20%5E%7B2m%7DB_%7B2m%7D%7D%7B%5Cleft(%20n-m%2B1%20%5Cright)%20!%5CGamma%20%5Cleft(%20n-m%2B%5Cnu%20%2B2%20%5Cright)%20%5Cleft(%202m%20%5Cright)%20!%7D%5Cleft(%20%5Cfrac%7Bz%7D%7B2%7D%20%5Cright)%20%5E%7B2n-2m%2B2%2B%5Cnu%7D%7D-%5Cfrac%7B%5Cpi%7D%7B2%7D%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5En%5Cleft(%20%5Cfrac%7Bz%7D%7B2%7D%20%5Cright)%20%5E%7B2n%2B%5Cnu%20%2B1%7D%7D%7B%5CGamma%20%5Cleft(%20n%2B%5Cfrac%7B3%7D%7B2%7D%20%5Cright)%20%5CGamma%20%5Cleft(%20n%2B%5Cnu%20%2B%5Cfrac%7B3%7D%7B2%7D%20%5Cright)%7D%0A

which holds whenz%3C%5Cpi%20%2C%5Cnu%20%3E-%5Cfrac%7B5%7D%7B2%7D

Plug its value into S, we obtain

S%3D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20-1%20%5Cright)%20%5Ena%5E%7B2n%7D%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5En%7D%7B2%7D%5Csum_%7Bm%3D0%7D%5E%7Bn%2B1%7D%7B%5Cfrac%7B%5Cleft(%202%5Cpi%20%5Cright)%20%5E%7B2m%7DB_%7B2m%7D%7D%7B%5Cleft(%20n-m%2B1%20%5Cright)%20!%5CGamma%20%5Cleft(%20n-m%2B%5Cnu%20%2B2%20%5Cright)%20%5Cleft(%202m%20%5Cright)%20!%7D%5Cleft(%20%5Cfrac%7Bz%7D%7B2%7D%20%5Cright)%20%5E%7B2n-2m%2B2%2B%5Cnu%7D%7D%7D%0A

-%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20-1%20%5Cright)%20%5Ena%5E%7B2n%7D%5Cfrac%7B%5Cpi%7D%7B2%7D%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5En%5Cleft(%20%5Cfrac%7Bz%7D%7B2%7D%20%5Cright)%20%5E%7B2n%2B%5Cnu%20%2B1%7D%7D%7B%5CGamma%20%5Cleft(%20n%2B%5Cfrac%7B3%7D%7B2%7D%20%5Cright)%20%5CGamma%20%5Cleft(%20n%2B%5Cnu%20%2B%5Cfrac%7B3%7D%7B2%7D%20%5Cright)%7D%7D%0A

Exchange the order of the former summation, and note that the latter series is modified Struve function of order %5Cnu.

Hence,

S%3D%5Cfrac%7B1%7D%7B2%7D%5Csum_%7Bm%3D0%7D%5E%7B%5Cinfty%7D%7B%5Csum_%7Bn%3Dm%7D%5E%7B%5Cinfty%7D%7Ba%5E%7B2n%7D%7D%5Cfrac%7B%5Cleft(%202%5Cpi%20%5Cright)%20%5E%7B2m%7DB_%7B2m%7D%7D%7B%5Cleft(%20n-m%2B1%20%5Cright)%20!%5CGamma%20%5Cleft(%20n-m%2B%5Cnu%20%2B2%20%5Cright)%20%5Cleft(%202m%20%5Cright)%20!%7D%5Cleft(%20%5Cfrac%7Bz%7D%7B2%7D%20%5Cright)%20%5E%7B2n-2m%2B2%2B%5Cnu%7D%7D%0A

%0A%2B%5Cfrac%7Bz%5E%7B%5Cnu%7D%7D%7B2%5E%7B1%2B%5Cnu%7Da%5E2%5CGamma%20%5Cleft(%20%5Cnu%20%2B1%20%5Cright)%7D%5Cleft(%20-1%2B%5Cfrac%7B%5Cpi%20a%7D%7B%5Ctanh%20%5Cpi%20a%7D%20%5Cright)%20-%5Cfrac%7B%5Cpi%7D%7B2a%5E%7B1%2B%5Cnu%7D%7D%5Cmathrm%7BL%7D_%7B%5Cnu%7D%5Cleft(%20az%20%5Cright)%20%0A

To calculate the former series, replace n by n%2Bm, hence

S%3D%5Cfrac%7B1%7D%7B2%7D%5Csum_%7Bm%3D0%7D%5E%7B%5Cinfty%7D%7B%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7Ba%5E%7B2n%2B2m%7D%7D%5Cfrac%7B%5Cleft(%202%5Cpi%20%5Cright)%20%5E%7B2m%7DB_%7B2m%7D%7D%7B%5Cleft(%20n%2B1%20%5Cright)%20!%5CGamma%20%5Cleft(%20n%2B%5Cnu%20%2B2%20%5Cright)%20%5Cleft(%202m%20%5Cright)%20!%7D%5Cleft(%20%5Cfrac%7Bz%7D%7B2%7D%20%5Cright)%20%5E%7B2n%2B2%2B%5Cnu%7D%7D%0A

%0A%2B%5Cfrac%7Bz%5E%7B%5Cnu%7D%7D%7B2%5E%7B1%2B%5Cnu%7Da%5E2%5CGamma%20%5Cleft(%20%5Cnu%20%2B1%20%5Cright)%7D%5Cleft(%20-1%2B%5Cfrac%7B%5Cpi%20a%7D%7B%5Ctanh%20%5Cpi%20a%7D%20%5Cright)%20-%5Cfrac%7B%5Cpi%7D%7B2a%5E%7B1%2B%5Cnu%7D%7D%5Cmathrm%7BL%7D_%7B%5Cnu%7D%5Cleft(%20az%20%5Cright)%20%0A

Obviously, the double series is the product of two simple series

S%3D%5Cfrac%7B1%7D%7B2a%5E%7B2%2B%5Cnu%7D%7D%5Csum_%7Bm%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%202%5Cpi%20a%20%5Cright)%20%5E%7B2m%7DB_%7B2m%7D%7D%7B%5Cleft(%202m%20%5Cright)%20!%7D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B1%7D%7B%5Cleft(%20n%2B1%20%5Cright)%20!%5CGamma%20%5Cleft(%20n%2B%5Cnu%20%2B2%20%5Cright)%7D%5Cleft(%20%5Cfrac%7Baz%7D%7B2%7D%20%5Cright)%20%5E%7B2n%2B2%2B%5Cnu%7D%7D%7D%0A

%0A%2B%5Cfrac%7Bz%5E%7B%5Cnu%7D%7D%7B2%5E%7B1%2B%5Cnu%7Da%5E2%5CGamma%20%5Cleft(%20%5Cnu%20%2B1%20%5Cright)%7D%5Cleft(%20-1%2B%5Cfrac%7B%5Cpi%20a%7D%7B%5Ctanh%20%5Cpi%20a%7D%20%5Cright)%20-%5Cfrac%7B%5Cpi%7D%7B2a%5E%7B1%2B%5Cnu%7D%7D%5Cmathrm%7BL%7D_%7B%5Cnu%7D%5Cleft(%20az%20%5Cright)%20%0A

where%5Csum_%7Bm%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%202%5Cpi%20a%20%5Cright)%20%5E%7B2m%7DB_%7B2m%7D%7D%7B%5Cleft(%202m%20%5Cright)%20!%7D%7D%3D%5Cfrac%7B%5Cpi%20a%7D%7B%5Ctanh%20%5Cpi%20a%7D%0A

and%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B1%7D%7B%5Cleft(%20n%2B1%20%5Cright)%20!%5CGamma%20%5Cleft(%20n%2B%5Cnu%20%2B2%20%5Cright)%7D%5Cleft(%20%5Cfrac%7Baz%7D%7B2%7D%20%5Cright)%20%5E%7B2n%2B2%2B%5Cnu%7D%7D%3D-%5Cfrac%7B1%7D%7B%5CGamma%20%5Cleft(%20%5Cnu%20%2B1%20%5Cright)%7D%5Cleft(%20%5Cfrac%7Baz%7D%7B2%7D%20%5Cright)%20%5E%7B%5Cnu%7D%2BI_%7B%5Cnu%7D%5Cleft(%20az%20%5Cright)%20%0A

Plug these value into S, and after some elementary operation, we obtain

%5Csum_%7Bm%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20mz%20%5Cright)%7D%7Bm%5E%7B%5Cnu%7D%7D%5Cfrac%7B1%7D%7Bm%5E2%2Ba%5E2%7D%7D%3D%5Cfrac%7B%5Cpi%7D%7B2a%5E%7B1%2B%5Cnu%7D%5Ctanh%20%5Cpi%20a%7DI_%7B%5Cnu%7D%5Cleft(%20az%20%5Cright)%20-%5Cfrac%7Bz%5E%7B%5Cnu%7D%7D%7B2%5E%7B1%2B%5Cnu%7Da%5E2%5CGamma%20%5Cleft(%20%5Cnu%20%2B1%20%5Cright)%7D-%5Cfrac%7B%5Cpi%7D%7B2a%5E%7B1%2B%5Cnu%7D%7D%5Cmathrm%7BL%7D_%7B%5Cnu%7D%5Cleft(%20az%20%5Cright)%20%0A


Then we can calculate the limit %5Clim_%7Bb%5Crightarrow%20%5Cinfty%7D%20%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cleft(%20%5Cfrac%7BI_%7B%5Cnu%7D%5Cleft(%20tz%20%5Cright)%7D%7B%5Ctanh%20%5Cpi%20t%7D-%5Cmathrm%7BL%7D_%7B%5Cnu%7D%5Cleft(%20tz%20%5Cright)%20%5Cright)%20%5Cfrac%7B%5Csin%20tb%7D%7Bt%5E%7B%5Cnu%7D%7Ddt%7D%0A by using the lemma which is proved earlier in this article.

On the one hand

%5Csum_%7Bm%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20mz%20%5Cright)%7D%7Bm%5E%7B%5Cnu%7D%7D%5Cfrac%7B1%7D%7Bm%5E2%2Ba%5E2%7D%7D%3D%5Cfrac%7B%5Cpi%7D%7B2a%5E%7B1%2B%5Cnu%7D%5Ctanh%20%5Cpi%20a%7DI_%7B%5Cnu%7D%5Cleft(%20az%20%5Cright)%20-%5Cfrac%7Bz%5E%7B%5Cnu%7D%7D%7B2%5E%7B1%2B%5Cnu%7Da%5E2%5CGamma%20%5Cleft(%20%5Cnu%20%2B1%20%5Cright)%7D-%5Cfrac%7B%5Cpi%7D%7B2a%5E%7B1%2B%5Cnu%7D%7D%5Cmathrm%7BL%7D_%7B%5Cnu%7D%5Cleft(%20az%20%5Cright)%20%0A

multiply both sides by a%5Csin%20ab%0A, and integrate a from 0 to infinity, we get

%5Csum_%7Bm%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20mz%20%5Cright)%7D%7Bm%5E%7B%5Cnu%7D%7De%5E%7B-mb%7D%7D%3D%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cleft(%20%5Cfrac%7B%5Csin%20ab%7D%7Ba%5E%7B%5Cnu%7D%5Ctanh%20%5Cpi%20a%7DI_%7B%5Cnu%7D%5Cleft(%20az%20%5Cright)%20-%5Cfrac%7B%5Csin%20ab%7D%7Ba%5E%7B%5Cnu%7D%7D%5Cmathrm%7BL%7D_%7B%5Cnu%7D%5Cleft(%20az%20%5Cright)%20%5Cright)%20da%7D-%5Cfrac%7Bz%5E%7B%5Cnu%7D%7D%7B2%5E%7B%5Cnu%20%2B1%7D%5CGamma%20%5Cleft(%20%5Cnu%20%2B1%20%5Cright)%7D%0A

On the other hand, according to the integral expression of Bessel function of the first kind

%5Csum_%7Bm%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20mz%20%5Cright)%7D%7Bm%5E%7B%5Cnu%7D%7De%5E%7B-mb%7D%7D%3D%5Csum_%7Bm%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20%5Cfrac%7Bz%7D%7B2%7D%20%5Cright)%20%5E%7B%5Cnu%7D%7D%7B%5Csqrt%7B%5Cpi%7D%5CGamma%20%5Cleft(%20%5Cnu%20%2B%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%7D%5Cint_%7B-%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B%5Ccos%20%5Cleft(%20mz%5Csin%20%5Ctheta%20%5Cright)%20%5Ccos%20%5E%7B2%5Cnu%7D%5Ctheta%20d%5Ctheta%7De%5E%7B-mb%7D%7D%0A

exchange the order of integration and summation

%3D%5Cfrac%7B%5Cleft(%20%5Cfrac%7Bz%7D%7B2%7D%20%5Cright)%20%5E%7B%5Cnu%7D%7D%7B%5Csqrt%7B%5Cpi%7D%5CGamma%20%5Cleft(%20%5Cnu%20%2B%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%7D%5Cint_%7B-%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B%5Cleft(%20%5Csum_%7Bm%3D1%7D%5E%7B%5Cinfty%7D%7B%5Ccos%20%5Cleft(%20mz%5Csin%20%5Ctheta%20%5Cright)%7De%5E%7B-mb%7D%20%5Cright)%20%5Ccos%20%5E%7B2%5Cnu%7D%5Ctheta%20d%5Ctheta%7D%0A

%3D%5Cfrac%7B%5Cleft(%20%5Cfrac%7Bz%7D%7B2%7D%20%5Cright)%20%5E%7B%5Cnu%7D%5Csinh%20b%7D%7B%5Csqrt%7B%5Cpi%7D%5CGamma%20%5Cleft(%20%5Cnu%20%2B%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%7D%5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B%5Cfrac%7B%5Ccos%20%5E%7B2%5Cnu%7D%5Ctheta%7D%7B%5Ccosh%20b-%5Ccos%20%5Cleft(%20z%5Csin%20%5Ctheta%20%5Cright)%7Dd%5Ctheta%7D-%5Cfrac%7Bz%5E%7B%5Cnu%7D%7D%7B2%5E%7B%5Cnu%20%2B1%7D%5CGamma%20%5Cleft(%20%5Cnu%20%2B1%20%5Cright)%7D%0A

Note that the two integral %5Cint_0%5E%7B%5Cinfty%7D%7B%5Cleft(%20%5Cfrac%7B%5Csin%20ab%7D%7Ba%5E%7B%5Cnu%7D%5Ctanh%20%5Cpi%20a%7DI_%7B%5Cnu%7D%5Cleft(%20az%20%5Cright)%20-%5Cfrac%7B%5Csin%20ab%7D%7Ba%5E%7B%5Cnu%7D%7D%5Cmathrm%7BL%7D_%7B%5Cnu%7D%5Cleft(%20az%20%5Cright)%20%5Cright)%20da%7D%0A

and %5Cfrac%7B%5Cleft(%20%5Cfrac%7Bz%7D%7B2%7D%20%5Cright)%20%5E%7B%5Cnu%7D%5Csinh%20b%7D%7B%5Csqrt%7B%5Cpi%7D%5CGamma%20%5Cleft(%20%5Cnu%20%2B%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%7D%5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B%5Cfrac%7B%5Ccos%20%5E%7B2%5Cnu%7D%5Ctheta%7D%7B%5Ccosh%20b-%5Ccos%20%5Cleft(%20z%5Csin%20%5Ctheta%20%5Cright)%7Dd%5Ctheta%7D%0A

are both derived from the series %5Csum_%7Bm%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20mz%20%5Cright)%7D%7Bm%5E%7B%5Cnu%7D%7De%5E%7B-mb%7D%7D

Hence%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cleft(%20%5Cfrac%7B%5Csin%20ab%7D%7Ba%5E%7B%5Cnu%7D%5Ctanh%20%5Cpi%20a%7DI_%7B%5Cnu%7D%5Cleft(%20az%20%5Cright)%20-%5Cfrac%7B%5Csin%20ab%7D%7Ba%5E%7B%5Cnu%7D%7D%5Cmathrm%7BL%7D_%7B%5Cnu%7D%5Cleft(%20az%20%5Cright)%20%5Cright)%20da%7D%3D%5Cfrac%7B%5Cleft(%20%5Cfrac%7Bz%7D%7B2%7D%20%5Cright)%20%5E%7B%5Cnu%7D%5Csinh%20b%7D%7B%5Csqrt%7B%5Cpi%7D%5CGamma%20%5Cleft(%20%5Cnu%20%2B%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%7D%5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B%5Cfrac%7B%5Ccos%20%5E%7B2%5Cnu%7D%5Ctheta%7D%7B%5Ccosh%20b-%5Ccos%20%5Cleft(%20z%5Csin%20%5Ctheta%20%5Cright)%7Dd%5Ctheta%7D%0A

Take the limit both side as b tend to infinity.

%5Clim_%7Bb%5Crightarrow%20%5Cinfty%7D%20%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cleft(%20%5Cfrac%7B%5Csin%20ab%7D%7Ba%5E%7B%5Cnu%7D%5Ctanh%20%5Cpi%20a%7DI_%7B%5Cnu%7D%5Cleft(%20az%20%5Cright)%20-%5Cfrac%7B%5Csin%20ab%7D%7Ba%5E%7B%5Cnu%7D%7D%5Cmathrm%7BL%7D_%7B%5Cnu%7D%5Cleft(%20az%20%5Cright)%20%5Cright)%20da%7D%0A%0A

%0A%3D%5Cfrac%7B%5Cleft(%20%5Cfrac%7Bz%7D%7B2%7D%20%5Cright)%20%5E%7B%5Cnu%7D%7D%7B%5Csqrt%7B%5Cpi%7D%5CGamma%20%5Cleft(%20%5Cnu%20%2B%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%7D%5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B%5Ccos%20%5E%7B2%5Cnu%7D%5Ctheta%20d%5Ctheta%7D%3D%5Cfrac%7B%5Cleft(%20%5Cfrac%7Bz%7D%7B2%7D%20%5Cright)%20%5E%7B%5Cnu%7D%7D%7B2%5CGamma%20%5Cleft(%20%5Cnu%20%2B1%20%5Cright)%7D

At last, replace a by t, we obtain

%5Clim_%7Bb%5Crightarrow%20%5Cinfty%7D%20%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cleft(%20%5Cfrac%7BI_%7B%5Cnu%7D%5Cleft(%20tz%20%5Cright)%7D%7B%5Ctanh%20%5Cpi%20t%7D-%5Cmathrm%7BL%7D_%7B%5Cnu%7D%5Cleft(%20tz%20%5Cright)%20%5Cright)%20%5Cfrac%7B%5Csin%20tb%7D%7Bt%5E%7B%5Cnu%7D%7Ddt%7D%3D%5Cfrac%7B%5Cleft(%20%5Cfrac%7Bz%7D%7B2%7D%20%5Cright)%20%5E%7B%5Cnu%7D%7D%7B2%5CGamma%20%5Cleft(%20%5Cnu%20%2B1%20%5Cright)%7D%0A







Practice_1_a difficult limit exercise的评论 (共 条)

分享到微博请遵守国家法律