欢迎光临散文网 会员登陆 & 注册

一些有趣的数学题 (Day 1)

2022-05-18 11:10 作者:中华最菜蒟蒻OIer  | 我要投稿

已知 %5Cdfrac%7B1%7D%7Be%5E2%7D%3E%5Cln%5Cleft(%5Cln%5Cpi%5Cright),求证:%5Cdfrac%7B%5Cln%5Cleft(e%5E2%2B1%5Cright)-2%7D%7B%5Cln%5Cleft(%5Cln(%5Cln%5Cpi)%2B1%5Cright)%7D%2B%5Cdfrac%7B%5Cln%5Cleft(%5Cln(%5Cln%5Cpi)%2B1%5Cright)%7D%7B%5Cln%5Cleft(e%5E2%2B1%5Cright)-2%7D%3E%5Cdfrac%7B%5Cleft(2e%5E2%2B1%5Cright)%5Cln%5Cleft(%5Cln%5Cpi%5Cright)%7D%7B2%2B%5Cln%5Cleft(%5Cln%5Cpi%5Cright)%7D%2B%5Cdfrac%7B2%2B%5Cln%5Cleft(%5Cln%5Cpi%5Cright)%7D%7B%5Cleft(2e%5E2%2B1%5Cright)%5Cln%5Cleft(%5Cln%5Cpi%5Cright)%7D

解法会在下面给出,大家可以选择先自己思考一下这个问题。

证明:注意到该不等式两边都是形如 %5Cdfrac%7Ba%7D%7Bb%7D%2B%5Cdfrac%7Bb%7D%7Ba%7D 的形式,故可设t_1%3D%5Cdfrac%7B%5Cln%5Cleft(e%5E2%2B1%5Cright)-2%7D%7B%5Cln%5Cleft(%5Cln(%5Cln%5Cpi)%2B1%5Cright)%7D%2Ct_2%3D%5Cdfrac%7B2%2B%5Cln%5Cleft(%5Cln%5Cpi%5Cright)%7D%7B%5Cleft(2e%5E2%2B1%5Cright)%5Cln%5Cleft(%5Cln%5Cpi%5Cright)%7D,原不等式即化为 t_1%2B%5Cdfrac%7B1%7D%7Bt_1%7D%3Et_2%2B%5Cdfrac%7B1%7D%7Bt_2%7D

考虑 x%2B%5Cdfrac%7B1%7D%7Bx%7D(x%3E0) 的单调性,易知它在 (0%2C1%5D 上单调递减,在 (1%2C%2B%5Cinfty) 上单调递增,并在 x%3D1 时取得最小值。接下来我们研究 t_1和 t_2的大小关系。

对于 t_1,有:t_1%3D%5Cdfrac%7B%5Cln%5Cleft(e%5E2%2B1%5Cright)-2%7D%7B%5Cln%5Cleft(%5Cln(%5Cln%5Cpi)%2B1%5Cright)%7D%3D%5Cdfrac%7B%5Cln%5Cleft(%5Cdfrac%7B1%7D%7Be%5E2%7D%2B1%5Cright)%7D%7B%5Cln%5Cleft(%5Cln(%5Cln%5Cpi)%2B1%5Cright)%7D%3E1

而对于 t_2,设函数 f(x)%3D%5Cdfrac%7B2%2Bx%7D%7B%5Cleft(2e%5E2%2B1%5Cright)x%7D,则 t_2%3Df(%5Cln%5Cleft(%5Cln%5Cpi%5Cright)),而且 f%5Cleft(%5Cdfrac%7B1%7D%7Be%5E2%7D%5Cright)%3D1。因为 f(x)%3D%5Cdfrac%7B2%2Bx%7D%7B%5Cleft(2e%5E2%2B1%5Cright)x%7D%3D%5Cdfrac%7B%5Cdfrac%7B2%7D%7Bx%7D%2B1%7D%7B2e%5E2%2B1%7D,易知 f(x) 在 (0%2C%2B%5Cinfty) 上单调递减,所以有 t_2%3Df(%5Cln%5Cleft(%5Cln%5Cpi%5Cright))%3Ef%5Cleft(%5Cdfrac%7B1%7D%7Be%5E2%7D%5Cright)%3D1

因为 t_1%2Ct_2%3E1,所以原不等式化为 t_1%3Et_2,即:

%5Cbegin%7Baligned%7D%5Cdfrac%7B%5Cln%5Cleft(e%5E2%2B1%5Cright)-2%7D%7B%5Cln%5Cleft(%5Cln(%5Cln%5Cpi)%2B1%5Cright)%7D%26%3E%5Cdfrac%7B2%2B%5Cln%5Cleft(%5Cln%5Cpi%5Cright)%7D%7B%5Cleft(2e%5E2%2B1%5Cright)%5Cln%5Cleft(%5Cln%5Cpi%5Cright)%7D%5C%5C(2e%5E2%2B1)%5Cln%5Cleft(%5Cdfrac%7B1%7D%7Be%5E2%7D%2B1%5Cright)%26%3E%5Cleft(%5Cdfrac%7B2%7D%7B%5Cln%5Cleft(%5Cln%5Cpi%5Cright)%7D%2B1%5Cright)%5Cln%5Cleft(%5Cln(%5Cln%5Cpi)%2B1%5Cright)%5C%5C%5Cend%7Baligned%7D

设函数 g%5Cleft(%5Cdfrac%7B1%7D%7Be%5E2%7D%5Cright)%3Eg(%5Cln%5Cleft(%5Cln%5Cpi%5Cright)),则上面的不等式化为 g%5Cleft(%5Cdfrac%7B1%7D%7Be%5E2%7D%5Cright)%3Eg(%5Cln%5Cleft(%5Cln%5Cpi%5Cright))。接下来我们分析 g(x) 的单调性。

g(x) 求导,可得 g'(x)%3D-%5Cdfrac%7B2%5Cln(x%2B1)%7D%7Bx%5E2%7D%2B%5Cdfrac%7Bx%2B2%7D%7Bx(x%2B1)%7D%3D%5Cdfrac%7Bx%5E2%2B2x-2(x%2B1)%5Cln(x%2B1)%7D%7Bx%5E2(x%2B1)%7D。当 x%3E0 时有 x%5E2(x%2B1)%3E0,所以我们设 h(x)%3Dx%5E2%2B2x-2(x%2B1)%5Cln(x%2B1),则 h'(x)%3D2x%2B2-(2%5Cln(x%2B1)%2B2)%3D2x-2%5Cln(x%2B1)。因为 h(0)%3D0h(0)%3D0,而易证 x%3E0 时有 h'(x)%3E0 恒成立,所以有 h(x)%3E0%2Cg'(x)%3E0 在 x%3E0 时恒成立,也就是 g(x) 在 (0%2C%2B%5Cinfty) 上单调递增。   

因为 %5Cdfrac%7B1%7D%7Be%5E2%7D%3E%5Cln%5Cleft(%5Cln%5Cpi%5Cright)%3E0,所以 g%5Cleft(%5Cdfrac%7B1%7D%7Be%5E2%7D%5Cright)%3Eg(%5Cln%5Cleft(%5Cln%5Cpi%5Cright))。原命题得证。

补充:对 h'(x)%3D2x-2%5Cln(x%2B1)%3E0 在 x%3E0 时恒成立的证明。   

首先证明 e%5Ex%3Ex%2B1 在 x%3E0 时恒成立。设 p(x)%3De%5Ex-x-1,则 p'(x)%3De%5Ex-1。令 p'(x)%3D0 可得 x%3D0。显然 p'(x) 在 %5Cmathbb%7BR%7D 上单调递增,所以 p'(x)%3E0 在 x%3E0 时恒成立。又因为 p(0)%3D0,所以 p(x)%3E0 在 x%3E0 时恒成立,也即 e%5Ex%3Ex%2B1 在 x%3E0 时恒成立。   

有了这个式子,则 e%5Ex%3Ex%2B1%5CLongrightarrow%20x%3E%5Cln(x%2B1)%5CLongrightarrow2x-2%5Cln(x%2B1)%3E0%5CLongrightarrow%20h'(x)%3E0




一些有趣的数学题 (Day 1)的评论 (共 条)

分享到微博请遵守国家法律