哥德巴赫猜想的证明

根据双筛法及素数定理可进一步推得:r2(N)=(N/2)∏mr≥[N/(lnN )^2 ]≥1
证明:
对于共轭互逆数列A、B:
A:{1,3,5,7,9,……,(N-1)}
B:{(N-1),……,9,7,5,3,1}
显然N=A+B
根据埃氏筛法获得奇素数集合{Pr}:
{1,3,5,…,Pr},Pr<√N
为了获得偶数N的(1+1)表法数,按照双筛法进行分步操作:
第1步:将互逆数列用3双筛后得到真实剩余比m1
第2步:将余下的互逆数列再用5双筛后得到真实剩余比m2
第3步:将余下的互逆数列再用7双筛后得到真实剩余比m3
…
依次类推到:
第r步:将余下的互逆数列再用Pr双筛后得到真实剩余比mr
这样就完成了对偶数N的求双筛法(1+1)表法数,根据乘法原理有:
r2(N)=(N/2)*m1*m2*m3*…*mr
即r2(N)=(N/2)∏mr
例如:
[√70]=8,{Pr}={1,3,5,7},
3|/70,首先这35个奇数用3双筛后得到剩余13个奇数,则其真实剩余比:m1=13/35
5|70, 剩余的13个奇数再用5双筛剩余10个奇数,则其真实剩余比:m2=10/13
7|70, 剩余的10个奇数再用7双筛剩余10个奇数,则其真实剩余比:m3=10/10
根据真值公式得:
r2(70)
=(70/2)*m1*m2*m3
=35*13/35*10/13*10/10
=10
r2(70)=10
分析双筛法r2(N)的下限值:
双筛法本质上第一步:先对A数列筛选,根据素数定理,A中至少有[N/lnN ]≥1个奇素数,
即此时的共轭互逆数列AB中至少有[ N/lnN ]个奇素数
第二步:再对B数列进行筛选,筛子是相同的1/lnN
则根据乘法原理由此推得共轭数列AB中至少有:r2(N)≥[N/(lnN )^2 ]≥1个奇素数。
例如:30第一步:先对A数列筛选,A中至少有[ N/lnN ]=[30/ln30 ]=8个奇素数,而π(30)=10
即此时的共轭互逆数列AB中至少有[N/lnN ]=[30/ln30 ]=8个奇素数。
A 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
B 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1
第二步:再对B数列进行筛选,筛子是相同的 , 由此推得共轭数列AB中至少有:
r2(30)≥[30/(ln30 )^2 ]=2个奇素数,而r2(30)=8
A 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
B 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1
故:r2(N)=(N/2)∏mr≥[ N/(lnN )^2 ]≥1个奇素数
运用数学归纳法证明:每个大于等于9的奇数都是3+两个奇素数之和
崔坤
中国青岛即墨,266200,
摘要:数学家潘承洞25岁时提出:“我们可以把这个问题反过来思考, 已知奇数N可以表成三个素数之和, 假如又能证明这三个素数中有一个非常小,譬如说第一个素数可以总取3, 那么我们也就证明了偶数的哥德巴赫猜想。”,直到2013年才有秘鲁数学家哈罗德贺欧夫格特彻底证明了三素数定理。
关键词:三素数定理,奇素数,加法交换律结合律
中图分类号:O156 文献标识码:A
证明:
根据2013年秘鲁数学家哈罗德·贺欧夫格特(Harald Andrés Helfgott)
已经彻底地证明了的三素数定理:每个大于等于9的奇数都是三个奇素数之和,
每个奇素数都可以重复使用。它用下列公式表示:Q是每个≥9的奇数,奇素数:q1≥3,q2≥3,q3≥3,则Q=q1+q2+q3 根据加法交换律结合律,不妨设:q1≥q2≥q3≥3,则有推论:Q=3+q1+q2,
即每个大于等于9的奇数都是3+两个奇素数之和。
我们运用数学归纳法做如下证明:
给出首项为9,公差为2的等差数列:Qn=7+2n:{9,11,13,15,17,.....}
Qn=7+2n=3+q1+q2,(其中奇素数q1≥q2≥3,奇数Qn≥9,n为正整数)
数学归纳法:第一步:当n=1时 ,Q1=9=3+q1+q2=3+3+3成立
第二步:假设 :n=k时,Qk=3+qk1+qk2,奇素数:qk1≥3,qk2≥3,成立。
第三步:当n=k+1时,Q(k+1)=Qk+2=3+qk1+qk2+2=5+qk1+qk2
即:Q(k+1)=5+qk1+qk2,
即任一个大于等于11的奇数都是5+两个奇素数之和,
从而若偶数N≥6,则N=qk3+qk4,奇素数:qk3≥3,qk4≥3
当N≥8时:N+3=Q(k+1)=3+qk3+qk4
即Q(k+1)=3+qk3+qk4,奇素数:qk3≥3,qk4≥3
综上所述,对于任意正整数n命题均成立,
即:每个大于等于9的奇数都是3+两个奇素数之和
同时,每个大于等于11的奇数Q=3+p1+p2=5+p3+p4,(p1,p2,p3,p4均为奇素数)结论:每个大于等于9的奇数都是3+两个奇素数之和,Q=3+q1+q2,
(奇素数q1≥q2≥3,奇数Q≥9)
参考文献:
[1]Major Arcs for Goldbach's Theorem. Arxiv [Reference date 2013-12-18]
[2] Minor arcs for Goldbach's problem.Arxiv [Reference date 2013-12-18]